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SUMMARY

Imaging speed is an important issue in magnetionasce imaging (MRI), as
subject motion during image acquisition is lialeptoduce artifacts in the image. Many
of the new applications of MRI require much fasteguisition. However, the speed at
which data can be collected in conventional MRfusdamentally limited by physical
and physiological constraints. Parallel MRI is eht@que that utilizes multiple receiver
coils to increase the imaging speed beyond previimiss by reducing the amount of
acquired data without degrading the image quality.

In order to remove the image aliasing du&-8pace undersampling, parallel MRI
reconstructions invert the encoding matrix thatcdbss the net effect of the magnetic
field gradient encoding and the coil sensitivityofiles. The accuracy, stability, and
efficiency of a matrix inversion strategy largelictdte the quality of the reconstructed
image. This thesis addresses five specific issedsiping to this linear inverse problem
with practical solutions to improve clinical andearch applications.

First, for reconstruction algorithms adoptindg-apace interpolation approach to
the linear inverse problem, two methods are intceduthat automatically select the
optimal k-space subset samples participating in the syrgthekia missing datum,
guaranteeing an optimal compromise between accaadystability, i.e. the best balance
between artifacts and signal-to-noise ratio (SNRhile the former is based on cross-

validation re-sampling technique, the second @#ia newly introduced data consistency

Xi
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error (DCE) metric that exploits the shift invarc@nproperty of the reconstruction kernel
to provide a goodness measure&apace interpolation in parallel MRI. Additionallhe
utility of DCE as a metric for characterizing anongoaring reconstruction methods is
demonstrated. Second, a DCE-based strategy isdudea to improve reconstruction
efficiency in real time parallel dynamic MRI. Thjrdan efficient and reliable
reconstruction method that operates on gridédegpace for parallel MRI using non-
Cartesian trajectories is introduced with a sigaifit computational gain for applications
involving repetitive measurements. Finally, a pudsguence that combines parallel MRI
and multi-echo strategy is introduced for improviBY R and reducing the geometric
distortion in diffusion tensor imaging. In additiathe sequence inherently provides a T2

map, complementing information that can be usefusbme applications.

Xii
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CHAPTER 1. INTRODUCTION

1.1 General Introduction

Since the pioneering work by Lauterbur in the 1970agnetic resonance imaging
(MRI) has revolutionized the field of medical imagi(1). Several factors contribute to
the continuing widespread clinical and researchaiddRI; it can provide good contrast
between soft tissue types; it can produce highluéisa 3D images with high signal-to-
noise ratio (SNR), and it does not employ ioniziadiation. The major drawback of MRI
is imaging speed, as subject motion during imaggiiation is liable to produce artifacts
in the images. Many of the new applications of MRRfuire much faster imaging.
Unfortunately, physiological safety guidelines linthe speed of conventional MRI.
Parallel MRI is a recently introduced techniquet ttedies on radiofrequency (RF) coil

arrays to achieve acquisition speed not possille @anventional MRI (2-9).

The goal in MR is to image the spatial distribatiof atom nuclei (generally water
hydrogen protons) in a subject. Conventional MRkesause of spatial linearly varying
magnetic fields (magnetic field gradients) to eredtde localized nuclear magnetic
resonance (NMR (10,11)) signal in order to prodaneimage. This gradient encoding
process requires a sequential switching of the eiagffield gradients a greater number

of times than the number of uniquely-identifiabpatal information of the object along
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the phase encodihglirection (1,12). This sequential requirement isg®a significant
time penalty since the time that separates twoignaegncoding steps may range in the
order of hundred microseconds or milliseconds. ffh@itional method for reducing MRI
acquisition time has been to use faster gradiemiweare. Unfortunately, safety measures
regarding magnetic field switching rates and RF @owleposition limit the speed

achievable in conventional MRI.

The spatial variations in the sensitivities of arag of receiver coils can emulate
the effect of gradient encoding on the NMR sigr&)l Therefore, if conventional MRI
acquisition were performed with an array of RF gdihere would be some redundancy in
the spatial encoding of the NMR signal. To imageobject, parallel MRI exploits this
redundancy with RF coil arrays to reduce the nunolbémes the magnetic field gradient
is required to be switched on and off. In otherdsp some of the magnetic gradient
encoding steps can be omitted during acquisition the data can be undersampled
below Nyquist requirement) without Nyquist-aliasiagifacts in the reconstructed image,
consequently accelerating the image acquisitionsTparallel MRI offers faster imaging

than conventional MR imaging of the same objethatsame resolution.

By markedly increasing the acquisition speed, paraiRI improves image

quality, reduces examination time, improves pat@nnhfort, and permits the imaging of

! Phase encoding is the process by which spinspatialy encoded based on their phase evolutiom ove
time. This is generally performed in a directiorthogonal to the direction of the signal readouke(s
section 1.3.2.2.1)
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moving structures. Currently, parallel MRI is a elg used commercial product with

significant impacts on almost every practical aspé®IRI (13).

1.2 Statement of the thesis
The quality of a parallel-acquired MR image isangle dictated by the performance
of the image reconstruction method. Although paldiiRI is an established technique
and available in virtually all latest generation MRI scanners, various challenges in
image reconstruction still impede many aspectdofautine use. This thesis addresses
five important aspects of parallel MRI reconstrantiwith practical solutions to ease

routine clinical and research applications.

1.2.1 Accuracy and stability

In order to remove the image aliasing duektspacé undersampling, parallel
MRI reconstruction must invert the encoding matitivat describes the net effect of
magnetic field gradient encoding and coil sengitivencoding. In general, two main
strategies are currently used for this inversiarcess: direct and indirect inversion. Most
direct inversion-based reconstruction methods fdmteuthe linear inverse problem in
image space and an explicit determination of theodimg matrix is required. While it
may be numerically unstable and computationallyensive to calculate the matrix
inverse, the direct inversion approach has the appiea theoretically exact solution.
Additionally, a variety of conditioning and regulaation techniques have proven useful

to mitigate instability of the direct inversion-lealsreconstruction (14).

2 k-space represents the domain in which the sigradquired and corresponds to the Fourier transtafr
the image space. (see section 1.3.2.2.1)
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The indirect inversion approach operateg-space and an explicit determination
of the encoding matrix is not needed. Rather, eaidsing datum is interpolated from
only a few local acquired samples from all coil mhals. Reconstruction algorithms
utilizing this approach are generally referred t® kaspace based reconstructions.
Implementation of the indirect inversion approacesents several advantages including
numerical stability and computational efficiencyt bmakes the solution to the inverse
problem inexact. Performance of reconstructionngfiyp depends on the selection of the
local acquiredk-space samples, or reconstruction kernel. For elgramall kernels may
be inadequate in capturing the complexity ofkkspace interpolation while large kernels
tend to be overly sensitive to errors in the da@&17). The optimal kernel, which has
been shown to depend on coil array configuratiamsen level in the acquired data,
imaging configuration, and calibration data, mustvie a suitable compromise between
these limits. In general, there has been an irgefft understanding of how to

automatically control the errors in the indirecte@nsion reconstruction.

In Chapter 2, the different types and sources mfrglinvolve in indirect inversion
based parallel MRI reconstruction are discussedisltshown that for a given
undersampled dataset, only the kernel support earabed to influence the total error. A
method based on cross-validation (CV) is proposduchv automatically select the
optimal kernel support that best balances the whimily demands of fit accuracy and
stability (i.e. between artifacts and SNR) in tkeanstruction. In this method, the kernel

selection is posed as a model selection problencerss-validation is used for selecting
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a regression model among a group of candidate mo&ecifically, the method is
demonstrated with the generalized auto-calibratipgrtially parallel acquisition
(GRAPPA (8)). The effectiveness of CV-selected késupport in image reconstruction
is evaluated with simulated and experimental datd,compared with standard GRAPPA

reconstruction.

Along the same line, Chapter 3 introduces a sinapie& robust data consistency
error (DCE) function for selecting the optimal keksettings (e.g. kernel support size,
kernel support configuration, calibration datasetjong a set of settings that influence
the performance of parallel MRI reconstructionkispace. As an alternative to cross-
validation (introduced in Chapter 2), which rel@sly on the lowk-space information,
DCE integrates information at all acquired resolusi and is therefore more robust and
balanced. Additionally, DCE is computationally efint compared to cross-validation.
DCE exploits the shift invariance property requiegrmof the reconstruction kernel to
provide a goodness measurekedpace based parallel MRI reconstruction algorithivss
an illustration of its utility, strategies for uging DCE to select the optimal kernel
support for GRAPPA and the optimal calibration datafor temporal GRAPPA

(TGRAPPA (18)) are outlined with the presentatidémovivo results.

1.2.2 Performance assessment
The design of a parallel MRI reconstruction mettsitbuld be validated for
particular coil array geometries and sampling ttaje. This suggests the need for

guantitative measures for assessing reconstrugierformance. The performance of
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parallel MRI reconstruction employing direct matrirversion has been generally
guantified using metrics such as g-factor (3) whiolkeasures the degree of noise
amplification in reconstructed images. For indirécversion based reconstructions,
however, the noise amplification solely cannot adleva good performance assessment of
the reconstruction because of the presence of m#mr dominant errors that include
model errors (approximation error) and other noedated errors. Tools for quantifying

the total error fok-space basegarallel MRI reconstructions have been lacking.

The data consistency error (DCE) function introdliceChapter 3 is proposed as
a measure for quantifying the performancé-space based parallel MRI reconstructions.
It is shown by simulation on experimental data ttiedre is a strong correspondence
between DCE and the mean square error (i.e. themalmed mean square difference
between the reduced-data reconstructed image andulihkdata reconstructed image).
The potentials of DCE as a quantitative metricdloaracterizing reconstruction error, for
comparing different parallel image reconstructidgodathms, and more importantly for

optimizing reconstructions are explored on GRAPRA @aGRAPPA reconstructions.

1.2.3 Computational efficiency for real time accelerateddlynamic datasets
Reconstruction time is one of the most importatdies to be considered in a
parallel image reconstruction algorithm for reaitei accelerated dynamic acquisition. To
reconstruct an image from an undersampled datpseallel imaging relies on prior
knowledge of the coil arrays sensitivities. Thel ga@nsitivity information is generally

obtained through calibration. In dynamic MRI ac@uws such as free breathing cardiac
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imaging with flexible cardiac matrix coils, the taensitivities change in time due to
respiration induced chest wall excursions. Thisunas that the calibration information
be determined for every time frame, possibly legdio long reconstruction time.
Reconstruction efficiency may be improved since ¢lgelic respiratory induced chest
wall movement may cause many frames to carry apmetely the same calibration

information.

In chapter 4, an approach is introduced that esliBCE to provide a consistency
measure of the frame-to-frame calibration informatichange in real time dynamic
parallel imaging. This tracking information can lexploited to improve the
reconstruction efficiency and accuracy by allowitigpe frames to share the same
calibration information and avoid using inconsistealibrating frames. The method is
demonstrated using TGRAPPA witim vivo free-breathing cardiac imaging data.
Compared to the original TGRAPPA, the modified TGP produces images with
reduced artifacts and allows for faster reconsimactThe method is simple and robust

and can be applied to other real-time parallel dyimamage reconstructions.

1.2.4 Computational efficiency for non-Cartesian trajectaies

While parallel imaging has enjoyed great succesth wequences based on
rectilinear sampling, incorporating non-Cartesiampling into parallel imaging poses
non-trivial challenges in the reconstruction. Itshbeen recognized that in some
applications, non-Cartesian sampling trajectorigshsas spiral (19) and radial (20) may

be preferred. In general, parallel MRI reconstiutdi from partially acquired non-
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Cartesiark-space data require the solution of large linearaggn systems, which pose
greater challenges due to memory requirement ampetational demand for inverting

large matrices.

In the last few years, several algorithms for retarcting non-rectilinear
undersampled datasets have been proposed (15,2D@&dpite the successes of these
algorithms, no commercial scanner has been repddedupport reconstruction of
undersampled non-Cartesiarspace data. This suggests that it remains a clgal¢o
rapidly and reliably reconstruct an image from usdmpled non-Cartesidaspace data.
This challenge is higher in applications involviteyge volume of datasets such as

functional MRI (25), perfusion weighted imaging J2énd diffusion tensor imaging (27).

Chapter 5 presents an approach for efficiently msttacting non-Cartesian
undersampledk-space datasets. Typically an indirect inversiorsebla method, the
approach operates on griddedpace. A rigorous GRAPPA interpolation on the deid
data requires a different fitting kernel for ea@twim (24) because an invariant kernel is
not applicable. Consequently, the reconstructi@mtess can be very time consuming. To
overcome this difficulty, a strategy is presentbeattexploits the pattern of energy
distribution during the gridding process to redube number of kernels per coill,
necessary to produce high quality image, down t phrallel imaging acceleration
factor. This number of kernels per colil is only dtexnel more than that of a normal

Cartesian GRAPPA, a significant gain for non-Caatespplications involving repetitive
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measurements such as functional MRI, perfusion MRRY diffusion tensor imaging.

Reconstructions ah vivoundersampled spiraind radialdatasets are demonstrated.

1.2.5 SNR improvement in parallel Diffusion Tensor Imagirg

Diffusion tensor imaging (DTI) is a recently devadal MRI technique that can
provide information regarding the architecture antrostructure of a tissue through
characterization of free diffusion (i.e. Browniarotion) of water in tissue. The greatest
technical difficulty in DTI acquisition is to ovesme the effects of macroscopic tissue
motion, while retaining sensitivity to microscopi@ter motion. Single-shot echo planar
imaging (EPI1 (28)) is the most widely used acqiasitstrategy for DTI owing to its
insensitivity to motion. However, limited spatigsolution, geometric distortion, and low
SNR are serious EPI limitations (29). These linutad severely entangle the vivo

applications of DTI particularly in the regionssifong field inhomogeneities.

Parallel MRI has been proposed as a means to realdidacts and improve
spatial-temporal resolution in DTI. However, paghMRI may compromise the SNR as
a result of reduced acquired data, which is detnaddor DTI since SNR is often limited
in DTI. In practice, multiple measurements are fperformed to recover the SNR lost,
which results in lengthy scan times, annulling $hpeed benefit of parallel imaging. It is
therefore important to adapt parallel DTl sequeniesmprove image SNR without

compromising the advantages of parallel MRI.
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In Chapter 6, a single-shot multi-echo parallel pBlse sequence is proposed to
improve the acquisition efficiency in parallel difion tensor imaging (DTI). It is
demonstrated by simulation and by experiments thdh an appropriate echo
combination strategy the sequence can provide a &NRncement while maintaining
the advantages of parallel EPI. It is also expenitaéy shown that this SNR gain can be
utilized to reduce the number of measurements oétguired to ensure adequate SNR for
accurate DTl measures. Additionally, it is showattthe multiple echoes can be used to
derive a T map, providing additional information that might beefisl in some

applications.

1.3 Background

This section describes principles and terminologiesessary for appropriate
appreciation of the thesis aims. A more detail aration of the physical and engineering
principles of MRI can be found in many textbook8)(3To varying degrees and without
rigorous derivation, the section provides the hgiits of the physics behind MR signal
generation and how this signal is translated imar@age. To put parallel MRI in context
and enable the reader to appreciate the neces$sisydevelopment, a brief description of
spatial encoding and decoding in conventional MRkpiovided as well as traditional
strategies to accelerate the scan time. The basicepts of parallel MRI and selected

examples of parallel image reconstruction methodslascribed.

% T2 map is a graphical representation of the spin-gelaxation time distribution (see section 1.3)
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1.3.1 Review of MR physics

Felix Bloch and Edward Purcell independently denraesd the phenomenon of
nuclear magnetic resonance (NMR) in 1946 (10,11)1952, they were both awarded the
Nobel Prize in Physics for the discovery. NMR rel@n a few principles. All elements
with nuclearspin placed in an external magnetic fieddcillate The frequency at which
they oscillate depends on the strength of the ntagfield. These nuclei are capable of
absorbing energy if exposed to electromagneticggnat the frequency of oscillation.
After absorption of the energy, the nuclei releaiseeradiate this energy to return to their
initial state of equilibrium. This reradiated ommismitted energy is detected as MR
signal. From the MR signal, information about plgsiand chemical properties of the
excited elements can be obtained. NMR finds apjpdioca in many fields of science,

medicine, and engineering.

1.3.1.1 Nuclei behavior

Certain nuclei {H, **C, N, *'P, among others) have spin states, and thus behave
like tiny bar magnets with magnetic dipole momeihtsthe absence of magnetic field,
the dipole moments are randomly oriented (Figudm)l.In the quantum world, this
scenario is indicative of a degenerate state whdrgarticles in the population are
expected to reside in the same energy level. Iiptbsence of a magnetic field the nuclei
can align either towards or against the induceld fiEigure 1.1b). Nuclei aligned with
the field are in a lower energy state (spin-uphttieose aligned against (spin-down). The

energy difference between the states is giveBy= 7wo where# is Plank’s constant

11
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andwo is theLarmor frequencyor resonance frequencyhe Larmor frequency is given
by
@, = yB,, [1.1]

whereBy is the strength of the external magnetic field amglthe gyromagnetic ratio of
the nucleus under consideration. The current dssonss restricted to hydrogen nuclei
'H as it is the primarily focus in MRI. Th&H atom gyromagnetic ratio is 42.58
MHz/Tesla and its resonance frequency inmTesla magnetic field typical for MRI is
approximately 63 MHzA group of spins experiencing the same magnetid fias a net
magnetization that represents the difference inamm®unt of spin-up and spin-down

particles. An approximation of this net magnetizatis given by

MO :4—p,ﬁ%D kTs

V2h?*B,N, [1.2]

KT,
Here, k is the Boltzmann’s constantls is the number of spins in the grouR, is the
sample’s temperature, is the spin densityMy is the magnetization vector magnitude,
andBy is the main magnetic fields strength. It is impattto note from Eqg. [1.2] that the
net magnetization can be maximized in practicaturitstances by utilizing high static

magnetic field strengths, interrogating a largengppulation, or lowering the sample’s

temperature (this later strategy is not suitabtenfedical purposes)(31).

At equilibrium, the net magnetization is alignedtiwthe static main magnetic
field orientation (Figure 1.1c). In transition &#athe net magnetization is composed of
the longitudinal componentM; along the orientation of the main magnetic fieldd @ahe

transversabpartMr which is perpendicular to the longitudinal directio

12
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Figure 1.1 Spin behavior in the presence of anreatenagnetic field

1.3.1.2 Relaxation phenomenon

The magnetization vector can be rotated from itsildgium orientation
(longitudinal) towards the transverse plane by yppl a radiofrequency (RF) excitation
pulse having the resonance frequency. The ovefi@tteof the RF excitation can be
measured by an angle which is given by

a OyBAt. [1.3]

In Eq. [1.3]Bs is the strength of the RF field amdl is the duration of the RF pulse. If the
spin system is left alone at this point, the nualili return to their equilibrium state. The
return of the nuclei to their equilibrium state dasot take place instantaneously, but
rather takes place over some time. Two physicatgs®ses govern this return: the
relaxation back to equilibrium of the longitudinadmponent of the net magnetization
referred as Frelaxation, and the relaxation back to equilibriwh its transversal

component known asyTrelaxation.
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The Ti-relaxation process is due to interaction of thespvith the surrounding
tissue (spin-lattice interaction). The re-growthtbé magnetization, after it is rotated
from its equilibrium orientation is given by

t [1.4]
M, (t)=My(1-e ™).

T1 in human is on the order of 100 — 1000 ms angeéxific for every tissue [85, 36,

101].

The T, relaxation process is related to the spin-spieratdtion. Spins generate
their own small magnetic fields. The combinationtieése micro fields with the main
magnetic field leads to local variations of the fietd, which is generally referred as
magnetic field inhomogeneity. This in turn causgsns to resonate at different
frequencies creating phase shift over time, siraoh spinexperiences slightly different
magnetic field. Over time, this will diminish theabsverse magnetization. This decay of
the transverse magnetization is given by

M, (t)= Moe_%. [1.3]

A typical T, relaxation time for protons in human is 40 — 10Gand is always shorter

than T, time. Eqgs. [1.4] and [1.5] are particular solutoaf the generalized Bloch

equations [101].

For most soft tissues in the human body, the pradensity is somewhat
homogeneous and therefore does not contributemajar way to signal differences seen
in an image. However, Tand T, can be dramatically different for different safisues,

14
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and these parameters are responsible for the rmoajdrast between soft tissues. and

T, are strongly influenced by the viscosity or rigydof a tissue. Generally speaking, the
greater the viscosity and rigidity, the smaller tfedue for T and T. It is possible to
manipulate the MR signal by changing the way inckitthe nuclei are initially subjected
to electromagnetic energy. This manipulation caange the dependence of the observed
signal on three parameters: proton densityaid T. This explains the existence of a
number of different MR imaging techniques ("weiglys"), which accentuate some

tissue properties and not others.

1.3.1.3 The MR signal

At equilibrium, the angle between the proton magnetoment and the external
magnetic field is not exactly zero. The spinninggmetic moment experiences a torque
from the constant magnetic field. This torque, \Whis perpendicular to both the
magnetic field and the proton magnetic moment, €auhe proton moments (and
subsequently the net magnetization vectorprecess around the main magnetic field
axis at the Larmor frequency. When the net magattiz is flipped toward the
transverse plan by application of an RF pulsepiiecessional motion results in a time-
varying magnetization in the transverse plane. d$&llating transverse magnetization
Mt produces a changing magnetic flux which in turduices current in a receiver coil
placed along the object. The voltage induced arahedRF coil can be expressed in

terms of a volume integral &+,

v(t)O Re[j C(r )M, ¢ )" d r]. [1.6]
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In Eq. [1.6], r is the 3-dimensional spatial vecamd C(r) represents the spatially
varying RF coil sensitivity. The complex signal, iefn is obtained by demodulating the

voltagev(t) with cosfuot) and sinfot) (quadraturre demodulation (32)), is given by

s(t):jC(r M, (¢ )ei(erat ¢ p, [1.7]

The following paragraphs describe the two mostdiEER experiments possible: the free
induction decay (FID) and the spin echo. An un@erding of the relaxation mechanism
governing a given acquisition is crucial for a givapplication and the resulting contrast

in MR images.

1.3.1.3.1 Free induction decay (FID)

After the application of a 90° RF pulse, spinsha transverse plane are subjected
to small magnetic field irregularities of the samplhese irregularities can be caused by
magnetic susceptibility differences among tissu@smosing the sample, especially near
tissue interfaces with bone and air. In additidre tmain magnetic field may not be
perfectly uniform. The overall effect of these gutarities is the variation of the spins’
precession frequencies across the sample. Thisdney dispersion causes the transverse
magnetization to decay faster at a rate deterntigetie new parameter T given by

1_1. 1 [1.8]

where T is the parameter reflecting the local magneticremment of the sample. The

transverse decay given by Eq. [1.5] is now govetmed, . For an FID experiment with
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a repetitive excitation by a 90° RF pulse with ateival TR (repetition time) between the
excitations, the received signal at steady stageven by

TRt [1.9]
s(t) O p(l-e ™ ).

1.3.1.3.2 Spin echo

While T, effects dominate every decay curve, there is aipilisy of recovering
a point in the MR signal with a pure,.TThis process is instigated by a 180° RF
refocusing pulse at some time TE/2 after the 9CGitatton pulse. This RF refocusing
pulse causes the dephasing spins to reverse dmeatid rewind back through the
magnetic environment. At a time point TE (echo fimafter the excitation pulse, the
magnetization will have recovered completely by é&ffects but not by I This process
of recalling the magnetization is called spin echioe steady state received signal for a
repetitive spin echo experiment is given by

TR _TE [1.10]
s(t)Op(l-e™ Je".

1.3.2 Review of MR Imaging

The previous section was devoted to a basic uradeisty of MR signal
generation without much regard how an image istecetom the available signal. This
section describes how the proton spin system, ardegjuently the MR signal, is

manipulated in order to produce an MR image.
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The traditional diffraction methods to resolve deat within the image cannot
be applied to MR signal due to its long wavelen@tly. 5 m in vacuum at 1.5 Tesla). In
MRI, spatial information is encoded into the MR &g prior to acquisition, and the
image is reconstructed by properly decoding thetiagha encoded MR signal.
Substituting Eq. [1.1] and Eq. [1.2] into Eq. [1&fjd taking into account the dependence
of the net magnetization, the external magneticd fitne spin density, and the flip angle

on the spatial position, the MR signal can be esged as

V’h

4szJ-C(r )sin(@ ¢ ))B( )ENBI X g |, [1.11]

s(t)=

whereB(r) is the external magnetic field consisting of thiensof the constant terr
and a spatial varying component. In Eq. [1.11], signal modulation by JTor T,
relaxation is intentionally neglected. Eqg. [1.11¢ntains four spatially dependent
functions: the desired spin densityr), and the other three functio@(r), a(r), andB(r)
that can be knowm priori. These three functions represent spatial encodintree
distinct stages of an MRI experiment: First, the [Riise provides an excitation pattern,
a(r), which localizes the spins to be imaged; Sectimel magnetic fieldB(r), dictates the
phase evolution of the selected spins; Last, tlileseasitivity, C(r), weights the localized

spins.

The following sub-sections describe the encodindyd@@coding methodologies as

are performed in existing conventional and par&ll&l techniques.
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1.3.2.1 Spatial encoding using RF excitation profile

Localizing the spins prior to imaging is an impottatep in MRI acquisition. It
may help select only a “region of interest” andréffiere provides a speed advantage (a
smaller volume of tissue can be imaged much fagter given resolution than a larger
extended sample). It also provides the flexibittyMRI to conform to the acquisition
procedure (e.g. acquisition in slice) of order ni@és such as Computed Tomography

(CT) and Positron Emission Tomography (PET).

The localization of the spins can be selective on-gelective. For selective
localization, only the spins contained within thelested slice or volume will be
interrogated by the imaging sequence. The slicélgiis established by creating a linear
magnetic field gradient across the sample. Thereatanagnetic field experiencing a
linear spatial perturbation can be expressed asureof the static componelag and the
linear magnetic field gradie&(r) given by

B(r)=B,+G( ), G(r )=GIt . [1.12]
Spins experience a slightly different local magnédield based on their location in the
slice gradient. Spins within a certain bandwidthLafmor frequencies that match the
bandwidth of the RF pulse are excited. Slice pesfiand RF pulse shapes have an
approximate Fourier relationship, so that in orsteeacquire a rectangular slice, a sinc-
shaped RF pulse is required. This localizationrigpie may result to a FID or spin echo
signal. Complex volume shapes can also be selduttdrequires longer RF pulse

excitations.
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In non-selective localization, all spins falling tine area of sensitivity of the RF
and whose resonance frequencies are within thexBiEagon bandwidth will be excited.

A rectangular shaped RF pulse is required in thsec

1.3.2.2 Spatial encoding using magnetic field gradients

To image the selected volume, conventional MRErebn the gradient fields for
spatial encoding in the remaining spatial directiofihe Larmor frequency of a spin is
linearly proportional to its position when the gtafield is augmented with a linearly
varying field. This use of a gradient to establshelationship between the spins along
some direction and their precessional rates isrexfe¢o adrequency encodinglong that
direction. Assuming that a uniform RF excitationgauis applied to localize the spins
and rotated the magnetization at a flip anglg = ap and that the coil sensitivit@(r) is
combined with the spin densip(r) to form the coil-weighted spin densipy(r), Eqgs.
[1.1], [1.11], and [1.12] can be combined to yi¢hee simplified MR signal equation
given by

_ V2h? [1.13]

4KT.

S

s(t) sina, )B[ €"°'p, ¢ )d 1

To obtain Eq. [1.13], the fact thBp is typically several orders of magnitude grealant

G(r) has been taken into account.

1.3.2.2.1 k-space and elements of a pulse sequence

By considering that the field gradie@is time-dependent, the phase evolution
(due to spin dephasing) over time can be expresstms of k-r where the vector Kk is

defined as
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k= —yJs G(t)dt. [1.14]
Substituting Eq. [1.14] into Eq. [1.13], the laggmplifies to

[1.15]

S

sin(@, )B[ €*"p, ¢ )d 1.

This data space is call&espace (Figure 2b). The spatial encoding functiartsq. [1.15]
are given by

E (r)=pe"" [1.16]
wheref is a scalar accounting for the constants outsfdeeintegral of Eq. [1.15]E«
are Fourier basis functions, and hence this methfodpatial encoding is commonly

called Fourier encoding.

Encoding is generally accomplished in two stepstpeise then continuously. In
point-wise encoding, gradients are turned on fahart period of time to dephase the
spins in the sample. During that time, the spifsges, represented by k-r, evolve over
time depending their spatial position. This is refd to as phase encodinthe process
of turning on the gradient for a short time is egilent to moving thé-space position
away from the centek-space (k = 0) along one direction (phase encodingction).
After a phase encoding step, the signal is contislyosampled with a gradient turned on
in the readout direction (frequency encoding dicg)t This continuous sampling
collects an entire line d&space in one acquisition. The gradient activitgdsnction of
time on each orthogonal axis is typically represdntllong with RF activity, in a pulse

sequence diagram (Figure 2a).
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Although p(r) is a continuous function, the discretization oé taspace and
therefore the continuous position vector r can pglied top.(r) resulting to a matrix
formulation of Eq. [1.15] as

s= Ep.. [1.17]
The encoding matrix E contains the Fourier basibexiding the effects of gradient
encoding. The elements in the signal vector s areri€r components of the coil-
weighted spin density. evaluated at the correspondikgpace locations k. An image is
reconstructed by applying an inverse Fourier tranmsétion on the acquired dataset. In
the special cases of rectilinearly sampl&gpace trajectories, the fast Fourier
transformation (FFT) algorithm can be applied. Aiddially, the Fourier transformation
is a unitary transformation that provides an optimaise averaging benefit. Here, the
reconstruction is efficiently accomplished withan explicit effort of determining E,

computing E-

For non-rectilinearly sampled (non-Cartesian) t#gges, the non-uniform
sampling density acrosg&-space prevents using a straightforward inverseri€ou
transform to reconstruct the image (33). Ratheiddgng (34) is first performed to
interpolate the data onto a Cartesian grid befbesdpplication of the inverse Fourier

transform.

1.3.2.2.2 Field of view and spatial resolution
A rectilinear sampling of th&-space trajectories with an infinite impulse chain

(i.,e. k = #0Ak, n = 0,1,2,...,0) results to a periodic replication of the objetthe image
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domain. If the object is of finite lengthand the sampling interval kaspace satisfies the
Nyquist criterion forAk<2n/L, then the object can be fully reconstructed witradiasing.
The maximumk-space sampling intervahk, that allows reconstruction without aliasing
defines the field of viewROV), which is given by

Fov=2" [1.18]
Ak

In practice, thék-space trajectories are sampled with a finite irm@whain (i.e. k
= #nAk, and abs(kx kmay. In this case, the voxels reconstructed by discFourier
representation are no longer ideal delta functibmstead, they are sinc functions with
zero crossings at integral multiples ©okmax, Which typically defines the image pixel
size,

Pixel Size= ki . [1.19]

max

1.3.2.2.3 Traditional strategies for accelerated acquisition

The sequential encoding of MR signal as describegkction 1.3.2.2.1 imposes a
significant time penalty in MRI. To give a feelirigr the time this process takes, the
acquisition of an image with resolution 28@56 acquired with a repetition time (TR) of
several hundred milliseconds requires a total toheeveral minutes. Imaging times of
this length haves obvious implications. The subjscliable to move during imaging
causing artifacts in the images, and dynamic psegeshanging on a time scale shorter

than this are difficult to capture.
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Figure 1.2 Elements of a pulse sequencekasyahce

(a) Pulse sequence diagram describing the sequermeents involved in the three
stages of spatial encoding in conventional MRI. Thdirst action is the RF
excitation along with the Gz gradient (first lobe)that select a slice, followed by
the refocusing of the slice select gradient {2lobe of Gz). The next stage is phase
encoding (Gy gradient) and readout pre-phasing graént (first Gx gradient
lobe) that dictate the phase evolution. Finally thérequency-encoding gradient
(Gx) is applied while the signal is acquired (ADC)In order to fully encode an
image, this sequence is repeated (at time intervatd TR) for different amplitudes
of the phase encoding gradient. (b) A schematic repsentation ofk-space. When
the phase encoding gradient is zero the pre-windingradient takes us to the left
of k-space and the readout line irk-space along the phase encode direction by an
amount Ak. The magnitude ofAk is inversely proportional to the field of view
(FOV) and the maximum extent ofk-space is inversely proportional to the voxel
size

Many acquisition strategies have been proposed deelerate MR scans.

Minimization of TR by increasing gradient strengtn lead to accelerated imaging (e.g.

(35)). Although fast acquisitions can be done iis tlvay, limits are quickly reached

because of instrumentation cost and human tolerahmeed, increasing gradient

strength requires more powerful amplifiers and gmaid coils capable of taking the

increased current and voltage, which adds sigmfigao the cost of the scanner. More

importantly, physiological limits associated withetrate of switching of such gradients
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are eventually reached. Exposing the human nensyssem to a time dependent
magnetic field may lead to spontaneous nerve fi({8§,37)) known as peripheral nerve

stimulation (PNS).

An approach that has attracted widespread use aluts tfavorable temporal
properties is to acquire more than one phase erouekeper TR. This approach has led
to a family of sequences called echo train imaghmat includes echo planar imaging
(EPI) (28) and spiral imaging (19). However, suelugences compromise both contrast

and resolution, and in some cases, lead to imagerton.

Another strategy is to reduce the field of viewhemt aliasing, which can be
done by localizing the region of excitation (38,3®nfortunately, complex spatial
localization often requires long radio frequencyF)Rulse trains and if the RF pulse
length is long compared to the relaxation timedhef sample being imaged, then the

region of excitation will be ill defined.

Partial Fourier imaging (40-42) is another solutidinexploits the theoretical
conjugate symmetry ok-space with part ok-space remaining uncollected and then
repopulated using various methods. For dynamic ingagvhere multiple time point
images are acquired, there are many methods thabwa the temporal resolution by
updating different parts déspace at different frequencies (more often atctrger than

edges (43)).
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The improvements in MR image acquisition speed tivepast two decades have
allowed significant advances in the visualizationd acharacterization of moving
structures. While this is a significant accompligmt) conventional MRI has more or less
reached its imaging speed limit imposed by safetiglgjines regarding magnetic field
gradient switching rate and RF power depositionthim next section, a safe alternative

strategy to accelerate image acquisition is intcedu coil encoding.

1.3.2.3 Spatial encoding using RF receiver coil sensitgiti

To image the localized spins, parallel MRI relies feeld gradients and the
sensitivities of an array of receiver coils for spaencoding. The spatial encoding
resulting from the variations in sensitivities efceiving RF coils is used to reduce the
number of gradient encoding steps necessary fooravemtional MRI acquisition
procedure. By analogy to Eq. [1.15], the MR sigmaleived in individual coil elements
can be expressed as

_ V2R’ [1.20]

k
§(k) oK,

sin(a, )B[ €“" C¢ po( )d 1

wheres (k) represents the MR signal received by Itheoil with spatial sensitivity(r).
Here, the MR signal is encoded by hybrid encodingfions of magnetic field gradients

and the coil sensitivities given by

E,(r)=BG [ )™ . [1.21]
The extra sub-indelkxas compared to Eq.[1.16] emphasizes that mataixttie number of
encoding functions has increased by a factor eigutle number of array elements. Note

that if the coil sensitivities can be combined sticht the composite sensitivities form
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spatial harmonics~g™*«"

, wherem is the harmonic number antk is the k-space
sampling interval), then the hybrid encoding fuocf become Fourier basis and the
reconstruction can benefit from the direct invelfsairier transform as convention MRI
reconstruction for rectilinear sampling trajecterieThese spatial harmonics would
represent redundant encoding functions. This mésatssome of the gradient encoding
steps can be omitted without affecting the necgssagrall encoding steps. Parallel MRI
exploits this redundancy in spatial encoding toedsmate the acquisition. Encoding
gradient steps may be omitted by a factor (“aceél@n factor”) greater than one and less
or equal to the number of array elements. In omderds, thek-space trajectory only

needs to traverse a subset of the origkagibace locations, resulting in a proportionally

faster acquisition.

1.3.2.3.1 Parallel MRI reconstruction methods

Phased array coil technology was originally devetbpo improve the intensity
uniformity of MR images obtained using surface goivhile preserving their inherent
gain of signal-to-noise ratio (SNR). The idea ahganultiple RF receivers to accelerate
MRI scans was first introduced in the late 1980548). Additional contributions in that
effort were made in the early 1990s (47-49). Howetlee first successfully accelerated
in vivoimages were demonstrated in 1997 using the SiMedtas Acquisition of Spatial
Harmonic (SMASH) technique (2) following by the S&ihvity Encoding (SENSE)

technique in 1999 (3).
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Since the inception of SMASH and SENSE, variousroupments and variations
(4-9,15) have been developed. In all cases, theedwes involve an explicit
determination of the encoding matrix E and its iseeE", as opposed to conventional
MRI. This is generally accomplished with two typkdataset: coil reference data and
image data. The coil data is used to determinestit®ding matrix E and the image is

reconstructed by computing the inverse of E.

1.3.2.3.1.1Sensitivity calibration
Calibration with coil sensitivity maps

As indicated in Eq. [1.21], knowing the coil seiites C(r) is indispensable to
determine the encoding matrix E(r) can be theoretically calculated using Maxwell’s
Equations (or the Biot-Savart law for sufficienttw frequencies) in combination with
the principle of reciprocity (50) if the coil arrayeometry and location are known. In
practice, however, the performances of coils vagpehding on the electromagnetic
properties of the subject. As a consequence ointreate interaction between coil and
subject, coil sensitivity information is preferaligcalibrated for each subject even for
rigid and static coils. The coil sensitivities che obtained from coil-weighted images
obtained using conventional MRI acquisition andorestruction methods (Eq. [1.17]).
These coils images may have lower spatial resoluti@n the accelerated diagnostic
images, but are required to have a sufficient FO\&dtisfy the Nyquist criterion. To
eliminate the spin density component, an additiomalge can be acquired at the same
contrast using a birdcage body coil designed tcehaviform RF spatial reception. A

guotient is calculated between each of the arrayirmages and the birdcage coil image
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to obtain a scaled version of the sensitivity ddttieoil. If a body-coil image is not
available, a sum-of-squares combined images dhallrray coil images can be used to

divide out the spin density.

Calibration data can be obtained from a separar before or after the image
acquisition. Because of the requirement of extenm&brmation, this approach is
generally known as external calibration. Alternalyy the calibration scan can be
incorporated as a part of the image acquisitiod, the calibration data can be extracted
from the image dataset. This approach is called-ealibration or self-calibration. The
crucial difference between the external- and salibcation approaches lies in the timing

of the acquisition of calibration data relativetihe image acquisition.

Calibration without coil sensitivity maps

Typically a self-calibration method, this methotbals coil sensitivity calibration
without explicitly reconstructing the calibratiomages. A fit can be performed to
determine the coefficients (weights) relating tleferencek-space data, referred as
calibrating signals, to the main data acquired fralincoils. These weights, implicitly
containing the coils sensitivity information, arsed to reconstruct the image. The
calibrating signals can be collected separatelytegrally to the acquisition. However,
they occur within the same scan and therefore efegred to as auto-calibrating signals

(ACS).
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1.3.2.3.1.2Solving the linear inverse problem

One distinguish feature between various parallell Md#onstruction techniques
currently available is the specific way of posingdasolving the common generalized
linear inverse problem s =pEIn this section, two major classes of parallebga
reconstruction are discussed and allied methodgedegenced in each case. The two

classes are direct and indirect inversion recoostmus.

Direct inversion reconstruction
This approach appears in the case where the empodatrix E is known and the
reconstruction entails finding a matrix inverse &ich that BE = | and thup = E's,
where | is an identity matrix. In general, the @iag matrix has full rank and more
rows (i.e. encodings) than columns (i.e. pixelseolve), i.e E is over-determined. As a
result, the Moore-Penrose pseudo-inverse is gdypearaéd to provide a least squares
solution. To take into account possible differengesioise levels and the correlation
between different coil channels, the receiver nomatrix ¥ is included in the
reconstruction:

p=(E"WIE)E"Y s, [1.22]
where the superscript {-)denotes Hermitian conjugation. SENSE (3) is a retab
representative of this approach. In SENSE, both ¢b#& reference data and the

undersampled data are operated in the image domain.

Block-by-block inversion performed through matriagonalization is a variant to

the direct inversion strategy. Since the coil d@nges are in general band-limited, by
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Fourier transforming the encoding matrix E along fllly sampled dimension, the
resulting encoding matrix,d, in that hybrid space is approximately band-diaoAn
inverse (Err )'1b|ock-diag can be determined efficiently by applying blockipck
inversion. E is obtained by performing another Fourier transfation of(Err )'1b|ock-diag
g-SMASH (9) and Space-RIP (4) are representativihisfapproach. In g-SMASH, the
reconstruction is performed with the coil datakispace and this constitutes the main
difference with SPACE-RIP in which the coil dat@ &ept in the image domain. While
this block-by-block inversion provides a numeristbility and computation efficiency

advantage over the full matrix inversion, it makes inversion inexact,  ~ |.

By allowing for more general sampling schemes, whevery pixel of the
undersampled image may potentially alias with ladl dthers, higher computational costs
are incurred with direct inversion as it becomesessary to invert larger matrices.
However, while it may be numerically unstable amumputationally intensive to
calculate the pseudo-inverse, the direct inversmn®ruction has the appeal of a
theoretically exact solution. Various regularizatiechniques (14) have been effectively
utilized to mitigate the instability of this recdnsction strategy. With direct inversion,
however, an explicit determination of the coil ggwnisy maps is required and in cases
where obtaining precise coil sensitivity data maydifficult, the inversion can constrain

the solutions to produce more benign errors irfitied reconstructed image.

Indirect inversion reconstruction
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The inverse problem can be solved without an exgletermination of E. Indeed,
coil sensitivity is in general band-limited kaspace. The effect of multiplication of the
imaged object by these coil sensitivities is themefa finite-kernel convolution ik-
space. The original Fourier components of the algémterest are locally spread in the
acquired data. The indirect inversion approachhmedgs the missing datum by linearly
interpolating a few locdat-space data. This procedure in its simplified fasmepresented
by

s(k + mik )=3 Wsk | [1.23]

wheres(k) represents the acquired signal at the locatioackived in the coil, sk+m
AK) is the reconstructed signal at the locatiohm Ak), Ak is the sampling interval along
k. For them™ spatial harmonic (or the number &k offset of the missing line from the

nearby acquired lines, counting according to agiwaily defined direction)w™ is the

interpolation weight associated $¢k). For Cartesian samplddspace, the interpolation
weights are assumed to be shift invariant in théreek-space, providing a significant
computational efficiency to the indirect inversistnategy. Notable representatives of this

strategy include SMASH (2), AUTO-SMASH (51), VD-SNBA (52), and GRAPPA (8).

In SMASH, an explicit estimate of the coil senstiivmaps is required and the

weights are derived by fitting the sensitivitiessfmtial harmonic as follows:
SW'G (r)=e™E. [1.24]
|

These weights are then used to combine the signa#sured in each coil (Eq. [1.23])

and generate a composite signal at both sampled@gidally omitted locations. This
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approach only works well with a linear coil arragdais not valid for general coil

geometries.

AUTO-SMASH, VD-SMASH, and GRAPPA do not explicitigetermine the
sensitivity maps. Instead, the interpolation wesghte obtained by fitting the auto-
calibrating signals (ACS) to the main data acquifesin all coils. A simplified

representative of this process is given by
> Sk +mk =3 w'sk . [1.25]
| |

The main differences between the implementatiorcemares of these three methods
reside in the number of ACS used, the number eipaiated data per coil, and the way
the composite final image is generated. GRAPPA,clwhs an improved version of
SMASH, allows arbitrary coil geometries. A more aletlescription of its procedure is

provided in chapter 2.

Although the indirect inversion approach providhe advantages of numerical
stability and computational efficiency over theedir inversion strategy, the indirect
inversion represents an approximate solution to itiverse problem. While the role
played by regularization is explicit for direct grgion reconstruction, the conditioning of
the indirect inversion reconstruction is largelypinit in the approximation made in the
reconstruction. Regularization generally reducessenat the expenses of increased
artifact (53). Tradeoffs between inexactness @uot)f and numerical stability are

important subjects of Chapters 2, 3, and 4.
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For non-Cartesian sampl&epace, the interpolation weights can be deperatent
the k-space location. As a result, the interpolationghts ideally need to be determined
for eachk-space point, which can lead to significant recas$ion time penalty. PARS
(15) is a representative of the indirect invergieconstruction for non-Cartesian sampled
k-space. A strategy to alleviate the time penaltsoaste with the indirect inversion
reconstruction of non-Cartesian undersam{espace data is an important subject of

Chapter 5.

1.3.2.3.2 Limits of parallel MRI

Parallel MRI is achieved at the cost of reducedhaligo-noise ratio (SNR). The
reduction in SNR stems from two factors: the redusamber of data samples, and the
instability in the reconstruction due to correlasoin the spatial information as
determined by the geometrical arrangement of theeyasoil. The first factor is intrinsic
to parallel MRI philosophy, which is to acquire ddsspace samples in order to reduce
scan time, and is therefore inevitable. A stratéiggt mitigates this issue in some
applications is discussed in Chapter 6. The setactdr may be alleviated by optimizing
coil geometry (54,55) or by improving the stabilapd accuracy of the reconstruction
algorithm. The noise amplification, which occursaasult of the reconstruction process,
is generally quantified by the g-factor. Given thise relationship between SNR of an
undersampled MRI reconstructed image (§9Rand that of the same fully sampled

reconstructed image (SN is given by

SNRY [1.26]
gvR

SNR® =
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where R is the acceleration factor. The g-factor dependstie spatial correlations
between the coils and to some extent on the numbeoils (3). It seems to increase
abruptly if higher acceleration factors are attesdpénd so the g-factor is thought to
represent an intrinsic limit to parallel MRI speéul practice, the accelerator factor used
is largely lower than the number of coil. This pa®s a vastly over-determined system
of equations and therefore improves the numericaldition of the matrix inversion

process.

1.3.2.3.3 Parallel transmit

Localizing the spins (as discussed in chapter WB.falling within a complex
volume shape requires long RF pulse trains andeifpulse length is long compared to
the relaxation times of the sample then the regioexcitation will be ill defined. Parallel
transmit is a recently introduced strategy inspiredth parallel imaging technique which
may now be making possible the excitation of complelume within realistic time
scales (56,57). An in-depth exposition on this d¢os beyond the scope of this

dissertation. Nonetheless, transmit encoding isl@ermethod.

1.4 General Summary
This chapter has briefly described basic principleginent to the understanding of
parallel MRI in order to provide a platform for dission of the following chapters.
Challenges that still hinder some aspects of dingnd research applications of parallel

MRI have been outlined. Chapters 2-6 are the mamtributions of the thesis and are
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designed to be individually self-contained. Cha@esstablishes an accurate method for
choosing the optimal reconstruction kernel thaabeés the conflicting demands between
fit accuracy and stability in parallel MRI reconsttion ink-space. Along the same line,
Chapter 3 introduces a simple and robust quangatietric that can be used for multiple
purposes including reconstruction performance assest, comparison of reconstruction
algorithms, and optimization of the tradeoff betwestifact and SNR. Examples of the
use of the metric to select reconstruction parareéteGRAPPA and TGRAPPA(18) are
provided. Chapter 4 introduces a new strategy torawve reconstruction efficiency in
real time dynamic parallel MRI. This strategy iséd on an automatic passive tracking
of the frame-to-frame coil sensitivity informatichange. Chapter 5 proposes an efficient
method for non-Cartesian parallel MRI reconstrugtiovhich is based on successive
convolutions ink-space. Chapter 6 concludes the thesis by intraduai simple and

convenient method for improving SNR in parallel CaEquisition.
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CHAPTER 2. CROSS-VALIDATION-BASED KERNEL SUPPORT
SELECTION FOR IMPROVED PARALLEL MRI

RECONSTRUCTION IN K-SPACE'

This chapter introduces a cross-validation basedhaode for selecting the
reconstruction kernel that balances between th#ictomy demands of fit accuracy and
stability in simplyk-space based parallel MRI reconstruction. The teswdn optimized
tradeoff between artifacts and noise. The developnpeesented here is based on
GRAPPA reconstruction algorithm although it can beadily extended to other
reconstruction methods. As demonstrated with erpartal data, the method improves
image reconstruction with GRAPPA. Because the ntethsimple and applied in post-

processing, it can be used with GRAPPA routinely.

2.1 Introduction
In parallel MRI employing indirect inversion rectongtion (1-9), the missing-
space data are estimated by interpolation betwesmeasureéi-space data points. The

interpolation kernel (or matrix) for each coil cha determined for a given acquisition

* The work in this chapter has been published a:i8\R, Zhao T, Heberlein K, Laconte SM, HuGtoss-
validation-based Kernel Support Selection for Invpd GRAPPA ReconstructioMagn Reson Med 2008;
59(4):819-825"
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scheme if coil sensitivity maps are known (10). Wihe generalized auto-calibrating
partially parallel acquisition (GRAPPA) techniqu8),( the interpolation kernel is
estimated using calibration lines by assuming allskeanel size andk-space invariance
of the kernel. A recent extension of GRAPPA inckidtespace data in the readout

direction in the interpolation to improve reconstran (11).

The GRAPPA procedure can be viewed as a specialaf&sspace interpolation in
which a truncated version of the interpolation letsupport is used. The kernel weights
are estimated through the least squares solutianlimfear system of equations relating
the acquired signals to auto-calibrating signal $)dnes. It can be inferred from this
procedure that two main categories of error exigh the GRAPPA technique: model
error and noise-related error. Model error has ¢amponents: one from using a limited
number (as well as position) of ACS lines instehthe true coil sensitivity maps and the
other from using a limited kernel size. Noise-rethterror arises from noise in the
measured data and includes noise-induced errofts aibeur during kernel weights
estimation, mainly due to the matrix inversion @ (inversion error (10)), and errors
that result from the application of the weights rfoisy measured data. It is well
recognized that the number and position of ACSslinsed in the parameter estimation
and the size and shape (or configuration) of theABIRA reconstruction kernel support
significantly affect the reconstruction quality dable with GRAPPA (12). For a given
data set, the error due to the use of limited A@8 iIs predefined (i.e. the number and
position of ACS lines are given) and only the késwgport can be varied to influence

the model error and the noise-related error. A& ity fitting approach, the model error
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is expected to decrease with increasing kernel sih#e the noise-related error is
expected to increase with the kernel size. To,dh&problem of how to choose a kernel
support that optimizes the tradeoff between theseshas not been fully addressed. The
choice of the kernel support has been shown tordkpe the coil configuration, noise
level in the acquired data, imaging FOV and origota and number and position of
ACS lines (13). Therefore, GRAPPA implementationgmying a fixed kernel support

for all situations, as commonly used, are unlikgbyimal.

Recently, a rank-revealing QR factorization wasduse select the most linearly
independent columns in the coefficient matrix df formed from alignment of ACS
points and including a larger range of local acegiisignals around each ACS point (13).
In doing so, the kernel support shape (or configomy that minimizes the noise
amplification during weights estimation is autornally selected whereas the kernel size
is intuitively chosen as in common implementatidnGRAPPA. Unfortunately, this
strategy only focuses on minimizing error in theearsion process without taking into
account other errors. A more general strategydbasiders all types of errors is therefore

of interest.

This work presents a method based on cross-validd€V) (14) for selecting the
optimal kernel support in GRAPPA reconstructiontiis method, the GRAPPA kernel
selection problem is framed as a model selectioblpm and cross-validation is used for
selecting a regression model among a group of datelimodels. Unlike other methods

such as Akaike (15), cross-validation does not oglyspecific statistical properties of the
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data or models being used (16). For a given acteleér data set, our method
automatically selects the kernel support in GRARBgonstruction that minimizes the
CV error and therefore provides an optimal compearhetween the model error and
error arising from noise, i.e. a tradeoff betwe@asand variance. Computer simulations
and experimental results are provided to demorstret a minimum exists in the CV
error as a function of kernel size for several &itjon schemes. The effectiveness of

CV-selected kernel support in image reconstruasavaluated with experimental data.

2.2 Methods

2.2.1 Review of GRAPPA

For simplicity, the following description assumeslithensional sampling on a
rectilinear grid although it can be readily geneed to the 3-dimensional case. In
GRAPPA, data acquired in both pha&g @nd frequencyk() encoding directions from
all coils are interpolated to estimate the misgilaga for each coil, and images of the
individual coils are reconstructed and combinetgrotising the square root of the sum of
the squares, to derive the final image. Following terminology used by others (11), we
define a block to consist of one acquired line atadand the neighboring1 missing
lines R is the acceleration factor) along the accelerdiezttion k). The fitting process,

as shown in Figure 2.1, can be represented matieaihaby (11),

N, H, 2.1
S (k, +1ak, k) =Y ¥ 3 W (Lbh)xS (k, +bRak, .k, +hak),

1=1b=-N, h=—H,
whereS represents thk-space signalkg,k,) is thek-space coordinate, anitk, and Ak

are the sampling intervals alokgandk, respectively. In Eq. (1),and| represents the
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coil numberr (r <R) is the number oAk, offset of the missing datum in a blod¥#; and
Ny are the number of blocks before and after theeotiiblock to which the missing data
belongs,H, andH, are the number of left and right neighboring cahsmrespectively,
used in the reconstructioh, is the number of coils in the array, awg, refers to the

weights of the-th line of collj.

Kx OOMMOO|®@0OO0
| g_) oNe][ NeNe
Col ™, O oWwOOl®oo
One
@ Acquired line block
O Missed line
@ Lineto beinterpolated

Figure 2.1 GRAPPA fitting proced

Acquired data from multiple blocks (along ky),
multiple columns (along k), and from all coils are
used to fit a single missing datum

The weights are obtained by solving the above éguan which the signals of
the left side are replaced by ACS lines. The equatan be formulated as a least-squares
problem in the matrix notation,

Ax =b, [2.2]
where b is the vector formed from vertical concatem of the ACS points recorded by
the individual coils, x is the vector of kernel gkis, and matrix A consists of the vertical
columns of the acquired data used to predict ed28 point with the kernel weights. For
a given data set, the choice of kernel supportatistthe tradeoff between the bias and
noise (12). Therefore, a kernel support that minési reconstruction error, thereby

resulting in an optimal tradeoff between SNR aridaat, is desired.
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2.2.2 Cross-validation in GRAPPA reconstruction

In our implementation of CV for kernel support stien in GRAPPA, the
available samples (ACS blocks) are divided iKtalisjoint partitions of approximately
equal size (referred here &sfold cross-validation), as illustrated in the exdenin
Figure2.2 for an outer reduction factor (ORF) oN8te that in the example, one partition
corresponds to one block although in general, déipgnon the value oK, a partition
may consist of several blocks. Weights for eachthef possible kernel supports are
determinedK times, each time using a different combinatiorKet partitions, and the
prediction error is calculated times, by predicting the data for the partitioft leut
(note that only the lines that would be omittedairtruly accelerated acquisition are
predicted) and comparing with the corresponding suesament of the partition. The
cross-validation errorefy) for a given kernel support is simply the averafehe K
prediction errors given by

[2.3]

wherex;, b, andA; are the estimated weights, the testing data (he. measured set of
ACS lines left out), and the encoding matrix, respely, at thejth step in the
partitioning. § is thejth subset of the samples aNgis the number of elements in that
subset. The case whekeis equal to the number of ACS blocks is knownfees leave-
one-out cross-validation. For this work, leave-ong-cross-validation is used. For
simplicity of illustrating the concepts of our meth we did not use other values of K in
this work.
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Available reference lines

N

Coil i -- 900000000 ® -~ - 000000000 - -
Partitioning Fg—+—5—F = ="~ Y<1i' K '

@ Acquired line

O Missed line ®O00

Q_ACS line 1 block

Figure 2.2 Cross-validation re-sampling stygtesed for kernel support selection

The available ACS blocks are divided intaK disjoint partitions of approximately equal size.

In this example, an acquisition scheme with accelation factor of 3 is illustrated. Weights for

each of the possible kernel supports are determineld times, each time using a different
combination of K-1 partitions, and the prediction error is calculated K times, by predicting

the data for the partition left out and comparing with the corresponding measurement of the
partition. The cross-validation error (gcy) for a given kernel support is simply the averagef

the K prediction errors.

2.2.3 Selection of kernel support

For a given number of kernel support points, isay (i alongk, andj alongky),
there are a number of kernel shapes (configurgtiomde considered. An exhaustive
search of all possible number of support points #air corresponding configurations
would require a large number of kernels to be ewrachiand be computationally
impractical. For example, with a matrix size of 26856 (as the one used in Figure 2.7)
accelerated with an ORF of 2, even the smallestdtesize (1x 1) would have 128& 256
= 32768 configurations. Here we only examine regidar kernels whose support is
contiguous in thek-space, consisting of only acquired lines neighigprine missing
datum (this restricted search has been terkaguhce locality criterion (9)). In this case,
either 1, 2 or 4 kernel support configurations weomnsidered for each kernel size,
depending the values ofandj; the multiple configurations arose because wh&nan
odd number there are two possible configuratiomsm@lthe phase-encoding direction,
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and whenj is an even number there are two possible configurs along the readout
direction. An example of kernel support considerais illustrated in Figure 2.3 forzax

2 kernel and & x 3 kernel. The examination process, as implementekisnstudy, starts
from the minimum kernel size (¥ 1) and proceed iteratively to kernels that are
incrementally expanded in each direction. The m@scstops when the maximum
dimensions in each direction allowed by the dataiser-defined limits are reached. In
the cross-validatiorgcy is computed for each of the kernels considered,tha kernel

support that generates the overall minimegmis retained for GRAPPA reconstruction.

® O O C @O | HON NON NON NO

® O O @O ® O O @O
(N NoN NoN NoN Ne " Mol fileh NOX X6
) ()
kx!
Coll ik
OS8O @O ® O @O O
O @O ® O O
(B) oR NON JNe) ® OE®O O
(i) (ii)

Figure 2.3 Configuration of the kernel sugpdo be examined by cross-validation

Examples for a kernel size of (A) 2x 2 (k, x k,) and (B) 3 x 3 considering only kernels
consisting of only acquired lines neighboring the msing datum. For each of these kernel
sizes, two possible configurations ((i) and (ii))xést. In all cases, the shaded circle is the point
to be interpolated. In this example, an acquisitionrscheme with acceleration factor of 2 is
illustrated.
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2.2.4 Computer simulation

Computer simulations were performed in Matlab (Méttks, Natick, MA),
using a standard Shepp-Logan phantom, to examieectbss-validation error as a
function of kernel size for several acquisition exties. Only kernel supports that were
formed according to thiespace locality criterion were considered althoiigs expected
that with each kernel size, the CV error may vdightly also with the kernel support

shape.

An eight-element coil was simulated by means of amalytical Biot-Savart
integration (Figure 2.4). Each coil element hadreutar loop shape and the elements are
placed 45° apart (with no gaps in between coilsparylinder of 320 mm diameter and
300 mm in length. The 2D sensitivity map of eachl abthe position z = 0 along the
cylinder axis was applied to a 128128 Shepp-Logan phantom of FOV 24@40 mn?
to generate the full versions @&fspace data sets, which were later downsampled to
emulate the parallel imaging acquisition. Gaussiaise was added to the raw data (both
the undersampled data and the ACS data). The ariahthe noised(= 10% chosen
corresponded to an average SNR of 100. Here tha@®&NR is defined as the ratio of
the mean intensity of the entire Shepp-Logan pmanto the variance of the noise.
Different sets of ACS lines taken at the centethafk-space were considered for the
fitting. Two different reconstruction strategies re/gperformed on the same simulated
data set and their performances were compared. fifsteis a standard GRAPPA

reconstruction that uses ax45 fixed kernel support, where kernel support elesare
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formed by considering thé-space locality criterion. The second is a GRAPPA

reconstruction using CV selected kernel support.

(B)

Figure 2.4 Sketch of the 8-element head arodlyused to generate for simulation

(A) indicating a brain mask within the array and (B) indicating the slicing procedure for axial
imaging

2.2.5 Data acquisition and reconstruction

Two different sets of experimental data were a@glir Specifically we
demonstrate our approach with 3 T anatomical bdata and 1.5 T dynamic cardiac
imaging data. All data were collected with partanips’ written informed consent in
accordance with institutional review board policid&e anatomical brain experiments
were performed on a 3T Siemens Tim™ Trio whole-bbtlR scanner (Siemens Medical
Solutions, Erlangen, Germany) with a 12-channeldhmatrix coil for reception and a
volume body coil used as the transmit coil. Axiedib scans were acquired from healthy
adult human volunteers using a gradient-echo seguéfR = 300 ms, TE = 4 ms, flip
angle = 80°, slice thickness = 5 mm, FOV = 256 mmajrix = 256x 256 x 12). The

cardiac imaging data sets were acquired on a liémehs Avanto with a 12-channel
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cardiac matrix coil. Four-chamber view scans weguaed using a retrospectively gated
segmented TrueFISP cine sequence in a single bne&dh(TR = 20.56 ms, TE = 1.09
ms, flip angle = 72°, slice thickness = 6 mm, FO\360 x 326.25 mm, matrix = 198

144 x 12). In both experiments, non-accelerated mulli-¢ata were collected and later
downsampled to emulate the parallel imaging actjomsiprocedure. Three parallel
imaging data sets were synthesized with ORFs &, Znd 4, respectively. Different

numbers of ACS lines were considered for each ORF.

Leave-one-out cross-validation was applied to usatepled data sets to identify
their respective optimal kernel supports. GRAPP/As \applied to each data set twice,
once using its CV-derived optimal kernel suppod another time with a common kernel
support of 4x 5. A quantitative assessment of the differencevéen the reconstructed

images was performed by computing the reconstmctierror defined by

—_ N
E=)

1(N) =1 o (n)‘/N wherel represents the GRAPPA reconstructed imageijs

the full-data reconstructed imadejs the total number of pixels, ands the pixel index.
As in standard GRAPPA, ACS lines were includedhie teconstruction of the final
image. All algorithms were implemented in MATLAB e Mathworks Inc., Natick

MA, USA) on a Pentium 4 CPU 2.00 GHz computer vlikB RAM.

2.3 Results
Figure 2.5 presents plots of cross-validation eafo(A) Shepp-Logan phantom

and (B) human brain data as a function of kerreg siong the phase encoding direction
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for ORF = 2, with 4, 8, and 12 ACS lines, respeadiivThe kernel size along the readout

direction was fixed at one (similar to the origif@RAPPA (8)) for simplicity as the

purpose of the plot was to demonstrate the “U-shiagleavior of the CV error. A similar

U-shape was seen when other kernel sizes alongetaout direction were used. The

plots in Figure 2.5A and Figure 2.5B have beenestdifferently as their shapes are of

more relevance here. In each figure, the threesgbare the same trend: as the model

complexity increases, the CV error decreases, esagminimum and then increases.
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Figure 2.5 Simulated and experimental plots ossfvalidation errors

(A) Shepp-Logan phantom and (B) human brain data vskernel size along the phase
encoding for OR = 2. In all plots, squares indicat¢he use of 4 ACS lines, dark filled
circles 8 ACS lines, and empty circles 12 ACS lines
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Phantom images reconstructed using GRAPPA witlkedfdx 5 kernel support
and CV identified kernel support, with acceleratfantors of 2 and 3 and a very limited
number of ACS lines (2 for ORF = 2, and 6 for OR¥j are presented in Figure 2.6B.
The non-accelerated image is also shown in Figu®A 2for comparison. The
reconstructions are presented in the same mannier Rigure 2.7. The reconstructed
images are displayed with the same windowing ggttim comparison. To the right of
each reconstructed image, its absolute differemoen fthe non-accelerated image is
displayed, with a windowing setting that is muckvés than that for the reconstructed
image. On each difference image, the average aesdlifference of a region with
pronounced aliasing visible in the fixed kernelaestruction (indicated by a rectangle) is
given in an oval annotation. Fixed kernel GRAPP&orestruction (left column) suffers
from noticeable aliasing artifacts. Note that thé identified kernel supports for ORF =
2 and ORF = 3, [-1 1¥ [-1 0 1] (alongky x alongk, relative to thek-space point to be
interpolated) and [-1 1% [-2 =1 0 1 2], respectively, are smaller thax 8. The numbers
in the brackets representing the kernel suppodicate, for each direction, the position
of acquired point used in the interpolation relatito the missing datum under

consideration.

Figure 2.7 presents a series of human brain imgg¢she non-accelerated image
and (B) GRAPPA reconstructed images using a fixed 8 kernel support and CV
identified kernel support. GRAPPA reconstructionsvegplied for different acquisition
schemes: (a) ORF = 2 with 2 ACS lines, (b) ORFwitB 6 ACS lines, and (c) ORF =4

with 9 ACS lines. The reconstructions are preseimdtie same manner as in Figure2.6.
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The overall mean-squared difference between theacosalerated and reconstructed
images is shown in Table 1 and discussed laterk&heel supports identified were [-1 1]
x [-1 0 1] (alongky x alongky), [-1 2] x[-2-101 2], and [-1 3% [-2 -1 0 1 2] for ORF

=2, ORF = 3, and ORF = 4, respectively.

Reference image

A

4x5 kernel CV kernel Choice

Reconstructed imaae Difference imaage Reconstructed image Difference image

Figure 2.6 Reconstructed Shepp-Logan phaimtages

(A) non-accelerated image used as reference, and)(BRAPPA reconstructed images using
a 4 x 5 kernel (left) and using kernel supports determied by CV (right). In (B), the two
rows correspond to 2 parallel imaging settings (frmm the top to bottom): R = 2 with 3
reference lines and R = 3 with 9 reference lines.olthe right of each reconstructed image, its
absolute difference with the non-accelerated imageés shown. The average absolute
difference in the ROI indicated by the rectangularbox is shown in an oval inset in each
difference image.
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Reference image

4x5 kernel CV kernel Choice

Reconstructed image Difference image Reconstructed image Difference image

Figure 2.7 Reconstructed brain data images

(A) non-accelerated image used as reference, and (BRAPPA reconstructed images
using a 4x 5 kernel (left) and using kernel supports determied by CV (right). In (B), the
three rows correspond to 3 parallel imaging setting (from the top to bottom): ORF = 2
with 2 ACS lines, ORF = 3 with 6 ACS lines, and ORE 4 with 9 ACS lines. To the right
of each reconstructed image, its absolute differemcwith the non-accelerated image is
shown. On each difference image, the average pixetensity of a region with pronounced
aliasing visible in the fixed kernel reconstruction(indicated by a rectangle) is given in an
oval annotation to illustrate the difference in ghating between the two reconstructions
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Reference image
A

4x5 kernel CV kernel Choice

B Reconstructed image Difference image Reconstructed image Difference image

Figure 2.8 Reconstructed cardiac images

(A) non-accelerated image used as reference, and)(BRAPPA images reconstructed with
a 4 x 5 kernel support (left) and CV-identified kernel supports (right). From the top to
bottom, the three rows in (B) correspond to 3 paraél image settings: ORF = 2 with 4 ACS
lines, ORF = 3 with 8 ACS lines, and ORF = 4 with2 ACS lines. To the right of each
reconstructed image, its absolute difference withhie non-accelerated image is shown. On
each difference image, the average pixel intensityf a region with pronounced aliasing
visible in the fixed kernel reconstruction (indicaed by a rectangle) is given in an oval
annotation to illustrate the difference in ghostingbetween the two reconstructions.
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GRAPPA reconstruction errors, as defined in thdisec'Methods”, were also
computed for situations with more ACS lines and pamed across the two reconstruction
strategies for different acquisition schemes. Thesellts are summarized in Table 1.

Note that this is not the.,, used to obtain the optimal kernel from the ACSadat

Figure 2.8 presents a series of four-chamber vindiac images of a single frame
TrueFISP cine sequence reconstructed from the trategies. The images are organized

in the same manner as in Figure2.6.

2.4 Discussion

2.4.1 CV error and optimal kernel support

In both Figure 2.5A and Figure 2.5B, all three srwalidation error plots share
the same trend: as the model complexity increabesCV error decreases, reaches a
minimum and then increases. In other words, if tihedel is too simple, it does not
capture the complexity of the data sufficientlytHhe model is too complex, it becomes
too sensitive to the errors in the data and ousertlfie calibration data. The kernel support
with minimum CV error corresponds to a suitable poomise for model complexity.
This feature reflects the combined effect of modelor and noise-related error in
GRAPPA reconstruction. It should also be noted timet CV error decreases with
increasing number of ACS lines, owing to increasedwledge regarding the coil
sensitivity implicitly provided by the ACS linesh& behavior of the CV error seen here

is in good agreement with that of the total errowpr discussed by Ye#t al. (9), who
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measured the combined effect of kernel size trumeafthrough thek-space locality
approximation) and noise amplification. In fachc@ the testing data is the set of ACS
lines, it can be stated that the CV error is kihepace version of the error power (9)
calculated at the resolution represented by the AG&s. In most cases, this would
correspond to an error at low resolution. In caglesre a full reference calibration scan is
available, the CV error would not be limited to loasolution. In general, CV operates
on a dataset for which the calibration lines areaaly predefined. In cases where the
ACS lines located at the low frequency do not capttihe relationship needed for
interpolation in the high frequency region (whiclaynoccur when the true sensitivity
maps are not smooth enough ((10)), neither CV ngragher method that solely exploits

these ACS lines would guarantee an artifact freemnstruction.

In generating the plots shown in Figure 2.5, ondynlel supports formed from
acquired signals nearest to the fitted datum weresidered. However, the observations
regarding trading off model complexity with noidgosld be valid in general although it
is expected that with each kernel size, the CVramay vary also with the kernel shape.
For a fix 45 kernel size, we examined the CV error for diffgéreernel shapes. With this
exhaustive search (data not shown here), the leeseksupport corresponded to the one
that met the locality criterion. While this resoéinnot be generalized, it indicates that the

k-space locality criterion is a good approximation.
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Table 2-1 Reconstruction mean square error

Brain image errors of GRAPPA reconstructions oladinusing a 4x 5 support and the CV derived
supports, respectively.

cvVv identified

4 x 5 kernel support

kx:l\
v of ACS Recon Eﬁg?ré) kernel support o
ORF : error §) K oIk,
lines (Cv
(4x5) kernel) Coil™ i,
2 1459 560 ; ° E
[[11]x[-101]
o
[¢] o
6 468 431
ox [3-11]x[10
1]
[3-113]x[-2-1012]
o
(0] [¢]
12 426 412 [5-3 -1 1]x [-1
6 1066 569
[[(13]x[2-10
12]
OO (o) o]
o
3x oo doo
12 497 470
[-4-12]x[2-1
012]
O (o)) [e)
o o O o
16 477 459 (412 5]x [1
01]
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Table 2-1 Continued

Cv  identified 4 x 5 kernel support
Recon kernel support upp
# of ACS Recon error ) Ky
ORF j error €) Ky
lines 4 (@Y, Coil
#5) Lernel) coil®% K,
[eJXelNe)
(o]
[olNelNe)
9 1345 616
[13]x[2-10
15 677 573
v [-5 -1 3]x [-3 -2
[5-137]x[-2-1012]
~10123]
18 617 559

O O
[o2Ne)
(o))
[-13]x [-4 -3 -2

~101234]

Reconstructions for»outer reduction with 2 ACS linesx3uter reduction with 6 ACS lines, and 4x

outer reduction with 9 ACS lines are shown in Feu7.

2.4.2 Qualitative image comparisons

The results of Figure 2.6 suggest with the simdlatata used, the 4 5 kernel

likely corresponds to a model that is too compled ¢éherefore is unable to accurately

predict the missing data. In contrast, the CV idieat the proper kernel supports to use

in the reconstruction and led to virtually artificte images (right column of Figure 2.6)
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Figure 2.7 illustrates then vivo data reconstruction results for the two
reconstruction strategies described above, witler@iht acquisition schemes: 2, 6, and 9
ACS lines for outer reduction factors of 2, 3, d@despectively. GRAPPA with the fixed
kernel support (left column) led to images withngiigant aliasing artifacts (as indicated
on both reconstructed images (arrows) and differantages), whereas the CV guided
GRAPPA reconstruction produced images exhibitingiimal aliasing (right column).
Residual aliasing artifacts in the CV images, whaie inevitable given the limited
number of ACS lines, can only be observed in tlileidince images and are significantly

lower (reduced by 2-3 folds in the aliases) thaséhin the fixed kernel reconstruction.

Similar observations can be made in Figure 2.8 Wwhshows GRAPPA
reconstructions, with a 4 5 fixed kernel support and CV identified kernepparts, of
four-chamber view TrueFISP cardiac images. Whike difference images for the fixed
kernel show pronounced residual aliasing, the diffee images for reconstructions with
the CV kernels only exhibit background noise withmoticeable residual aliasing. This
result again demonstrates the effectiveness ofC¥iemethod in identifying a proper
kernel support for GRAPPA reconstruction for a giveoil configuration, imaging

orientation, and noise level in the data

2.4.3 Implication on temporal resolution in cardiac imaging
As the number of ACS lines increases, the diffeeehbetween the images

reconstructed by the fixed kernel support and Gdhidied kernel supports becomes less
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visually apparent and needs to be assessed quiaetitaAs illustrated in Table 1 for the
case of brain data, the reconstruction error coatpat different parallel imaging settings
indicate that the CV identified kernel supports sistently outperforms the fixedx8
kernel support. Interestingly, at the acceleratiactor of 3, the CV method with 18
reference lines produced better reconstruction BRAAPPA with a 45 kernel with 24
reference lines. Similar behavior is also seenhat acceleration factor of 4. This
observation suggests that in some cases the CVoohgitoduces comparable results as
GRAPPA with a fixed window but with fewer numberA€S. It is also worth noting the
large variation in the kernel supports identifigdtbe CV. These kernel supports are not
obvious and may not be intuitively identified. Sianiresults were obtained (not shown)
for the cardiac data suggesting that GRAPPA cawrdibrated with fewer number of
ACS lines in cardiac imaging while preserving abhgality image even at high outer
reduction factor. The ability to reduce the ACS8meeded is expected to be beneficial

for cardiac imaging where temporal resolution ipamant.

2.4.4 Computational considerations

With a maximum search size set t03.Q0, slightly larger than what is used in a
previous paper (13), the CV algorithm adds an &utht computational time of 13 ~ 29
seconds to conventional GRAPPA reconstruction tikdsing k-fold cross-validation
(rather than the leave-one-out approach used ree)reduce this time. Also, the
computational time for CV kernel support selecteam be further shorted by distributed
computing. In practice, if computation time is ahcern, the user can choose a set of

kernel supports to be examined by CV based on ctatipoal considerations. For
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example, restricting the search to kernel sizegugek-space locality criterion (17), for
a fixed configuration, seemed to have producecebe#tsults compared to the use of 4
5 kernel size of same configuration in all caseang@red in this work. In general the
cross-validation presented can be applied in catjom with any GRAPPA

reconstruction for improved performance.

2.5 Conclusions
In this work, cross-validation is introduced fortiopal kernel support selection in
GRAPPA reconstruction for a given accelerated dataCross-validation error was first
demonstrated to vary with GRAPPA reconstructionnkérsupport. Subsequently,
GRAPPA reconstructions of experimental data werdopmed with cross-validation
selected kernels and a fixe&k5t kernel. Comparison of results demonstrated that C
selection led to GRAPPA results with significantiguced aliasing artifacts. The method

is simple and applied in post-processing and camskd with GRAPPA routinely.
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CHAPTER 3. A SIMPLE AND ROBUST METRIC FOR SELECTING
OPTIMAL RECONSTRUCTION PARAMETERS IN K-SPACE

BASED PARALLEL IMAGING °

In this chapter, a data consistency error (DCEXtion, that exploits the shift
invariance requirement of the kernel, is introdutegrovide a goodness measurekof
space based parallel MRI reconstruction algorithiiise DCE is derived from the
difference between the acquired signals and thsiimates obtained based on the
interpolation of the estimated missing data. Simotawith experimental data shows a
strong correspondence between the DCE and the stpmte error in the reconstructed
image, demonstrating its potential as a metricctonparing or choosing reconstructions.
The DCE is then applied for automatically selectihg optimal kernel support for the
generalized auto-calibrating partially parallel aisition (GRAPPA) reconstruction and
the optimal set of data frames for calibration @mporal GRAPPA reconstruction,
leading to improved reconstructions compared tstexd methods. The DCE is efficient
to evaluate, robust for selecting reconstructiorapeeters, and suitable for characterizing

and optimizingk-space based reconstruction in parallel imaging.

® The work in this chapter has been adapted forigation as “Nana R, Hu XA simple and Robust Metric
for Selecting Optimal Reconstruction Parameterk-ispace Based Parallel Imaginlylagn Reson Med.
(Under Review).
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3.1 Introduction

Fundamentally, parallel MRI reconstructionkispace assumes that only a limited
number of acquire#-space data contribute to the interpolation of asmg datum (1).
For Cartesian sampling methods, it is further agslithat the reconstruction kernel (or
simply kernel) is shift invariant in thespace. In general, the reconstruction performance
strongly depends on the selection of settings (eegnel support size, kernel support
configuration, calibration dataset) that influertbe kernel. For example, small kernels
may be inadequate in capturing the complexity efkdspace interpolation while large
kernels tend to be overly sensitive to errors ia tlata, both of which result in poor
reconstruction (2,3). A good choice of kernel supgae (or simply kernel size), which
has been shown to depend on coil array configuratioise level in the acquired data,
imaging configuration, and calibration data, mustvide a suitable compromise between
the two extremes. Methods for automatically detamg the optimal kernel parameters

for a given parallel-acquired dataset have beamnsgively sought (3-5).

The work of Qu et al. (4) presents an improved gaired auto-calibrating
partially parallel acquisition (GRAPPA (6)) in wihi@ rank-revealing QR factorization is
used to select the most linearly independent cotuairihe encoding matrix formed from
a large locak-space subset. The linear independence criteriom fpermits the selection
of the kernel support configuration, given a fiXegtnel size, which minimizes the noise
amplification in GRAPPA weights estimation. Howevéheir optimization criterion

targets noise performance rather than reconstrupgoformance.
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Samsonov (5) introduced a formalism in whikkspace based parallel MRI
reconstruction is framed as a way to approximagdrilierse of the encoding matrix with
a sparse matrix, with the error of this approximtiused as a criterion for optimizing the
kernel. In contrast to Qu’s approach (4), the opation criterion targets the model
accuracy. Although conditioning of the matrix insi@n using truncated singular value
decomposition (7) was able to reduce the noisdeetlarrors, it also reduced model
accuracy. Unfortunately, the method described bys®aov (5) did not provide a means

to simultaneously minimize both the model error andse related error.

In a recently published approach, the selectiothefkernel support for GRAPPA
was posed as a model selection problem and créisltran was used to select the
optimal kernel support among a group of kernel suppgandidates (3). Unlike the
previous methods, the cross-validation approadietarthe total error, minimizing both
the model error and noise related errors in GRARRP&wever, it can be computationally
expensive, ak-fold cross-validation requires each kernel suppartdidate to be trained
K times K>1). Additionally, the performance of cross-validat may vary with the
choice ofK. For example, the bias of the true error ratevestr (the estimator accuracy)
decreases whereas the variance of the true etoestimator increases with increasing
values ofK. Selection of the optim& for a given situation is still an open questioi (8
Furthermore, because the validation is performdy @m referencé-space lines near the

origin, the cross-validation approach focuses aorsrin the lowk-space. Therefore, a
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computationally efficient, robust and balanced methat facilitates the selection of

reconstruction kernel settings which balances betveetifacts and SNR is still desirable.

In this work, we present a data consistency efd@HK) function that exploits the
shift invariance requirement of the kernel to pdeva simple measure of reconstruction
error ofk-space interpolation for Cartesian parallel imagifgis DCE is derived from
the difference between the acquired signals andt th&timates obtained from the
interpolations of the estimated missing data. #hiewn experimentally that this DCE can
be used as an optimization criterion, which targie¢stotal error, for selecting the kernel
settings that balance between artifacts and SNRcifigally, the DCE was used to
automatically select the kernel support for GRAPE®W the set of calibrating frames for
temporal GRAPPA (TGRAPPA (9)) that result to animpd reconstruction. The
performance of DCE-optimized reconstruction is camegd to existing methods using

experimental data with different amounts of theerefcek-space data.

3.2 Theory
The development presented here is based on GRAREHolation procedure and
can be readily extended to othespace based parallel MRI reconstruction algorithins
is assumed that the data are undersampled alomh#s® encoding direction by a factor
of R. In GRAPPA, a missing-space point in a single coil is reconstructed ibgdrly

combining data acquired in both phakg é&nd frequencyk() encoding directions from
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all coils. In a blockwise notation (Figure 3.lahetGRAPPA reconstruction can be
written as (10)

L Na Hy [3.1]
Sj(K/‘F I’AK,yK( FX X 2 VY,r (I,b,h¥ S()k-l_ l:meyk xk_ Ahxk
|

|=1b=-Np, h=-H
where§ represents thk-space signal for thgh coil at thek-space coordinatesy( k),
and Ak, andAky are the sampling intervals alokgandk, respectivelyy (r <R) is the
number ofAky offset of the missing datum in a blod¥ andNy are the number of blocks
before and after the current block to which thesmig data belongd{, andH, are the
number of left and right neighboring columns, respely, used in the reconstruction,
is the number of coils in the array, anw, refers to the weights of threth line of coilj.

A block consists of one acquired line of data dmlreighborindr-1 missing lines. The
reconstruction weights are obtained by solving &qund1] in which the left side is filled

by auto-calibrating data.

OOMOO @O0 ke 06 00pP»000O0
O0O@0O0 ® o000
Cowooeo0 " feectCev®o00o0

@ Acquired line @ Acquired line
O Missed line © Filled line
@ Line to be filled @ Lineto be predicted

() (b)

Figure 3.1 Shift invariance property of the GRA®Pkernel

(@) A missed line is interpolated from acquired les from all coils; (b) an
acquired line should be predictable from the estimid missing lines. In this
illustration, R = 3 and a kernel of 2¢ 3 is used.
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Since GRAPPA kernel should ideally be shift invatian the k-space, the
estimated missing lines should be capable of ptiadiche acquired lines as depicted in
Figure 3.1b, allowing one to write

L Na Hy [3.2]
Sk FE ¥ 3w, (Lbhy S(kr DRKA Kk an,k
I

|=1b=-Np h=—H
It is reasonable to hypothesize that the optimalo$aveights minimizes the difference
between the original acquired signals and theirmeges. Therefore, a reconstruction
parameter settinm (e.g. kernel size, kernel support configuraticaibcation dataset) of
the kernel results in an optimal reconstructioit ihinimizes the data consistency error
function given by

ja-A(mf 53
DCE(m)=I— "1
KA

where || is the Euclidean norn# is a vector containing the original data, A is tieetor

consisting of estimated data obtained using tharpatemrm, andKa, is the size oA. DCE
takes into account both fitting and prediction esrand therefore considers the total error

(model error plus noise related errors) during kesettings optimization.

The practical implementation steps for determind@E of a given setting is as
follows:
Step 1 Derive the GRAPPA weights using the calibratioformation,
Step 2 Fill in the missing data of all coils accordirgEq. [1],
Step 3 Predict the acquired data using the same GRAP&#ghts using (Eqg. [2]),

Step 4 Compute DCE using Eq. [3].
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3.3 Methods

The effectiveness of the proposed data consisteroyr was experimentally
evaluated on GRAPPA and TGRAPPA reconstructionse TICE was applied to
automatically select the kernel setting that reslilh an optimal reconstruction. In both
applications, the selection process started by ifayrthe collection of kernel settings to
be examined by DCE followed by the evaluation of DGf each setting and the
identification of the setting with the minimum DCEt the same time, GRAPPA or
TGRAPPA reconstruction was also carried out folhdesrnel setting examined by DCE

in order to compute the reconstruction mean sqeei@ (MSE) for comparison. Here

MSE is defined byMSE=Y}|1(n)- I (n}2 I N wherel represents the GRAPPA or

TGRAPPA reconstructed imagkes is the full-data reconstructed imadk,is the total

number of pixels, and is the pixel index.

GRAPPA reconstruction using DCE-identified kernekting was compared to
those using a 4 5 x 12 kernel, the sparse-optimized kernel (5), ardcttoss-validation-
identified kernel (3). The first, second, and dhmumbers of the kernel notation represent
the kernel dimensions alorig, ky, and coil, respectively. The coil dimension isused
constant for cross-validation and DCE selected éderand will be omitted in the kernel
representation hereafter for simplicity. As the rspaapproximation method given by
Samsonov (5) did not specify a means for selectimg stopping criterion in the

optimization process, the targespace subset size was chosen to match the nurhber o
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points contained in the DCE-identified kernel inl@rto make a fair comparison between
the two methods. In each case, we verified thatsih@se approximation error as a
function of k-space subset size decreased down to the desie(asz described in
Samsonov’s paper (5)). Additionally the impact pplying Tikhonov regularization (11)
on the 4x 5 kernel was investigated and compared to the DQtifnized reconstruction.
L-curve method (11) was used for optimal reguldiiwe parameter selection. The
optimal regularization parameter (the corner of theurve) was selected as the one
where the product of abscissa and ordinate is amim (12). Experimental data were
collected with participants’ written informed consdn accordance with institutional
review board policies. All algorithms were implentexhin MATLAB (The Mathworks
Inc., Natick MA, USA) on a Quad Core Intel Xeon CRW4 GHz computer with 8GB

RAM.

3.3.1 Application to GRAPPA

The aspect of the kernel to select here was theeksupport. The set of kernel
supports to be examined by DCE was formed by fahgwthe procedure described
previously (3) which considers only rectangularnets designed according to tke
space locality criterion (2). The kernel supporattminimized DCE was taken as the

optimal one.

Axial brain imaging was performed on a 3T Siemems™ Trio whole-body MR
scanner (Siemens Medical Solutions, Erlangen, Geyinaquipped with a 12-channel

head matrix coil. Fully sampled scans were acquifiemn healthy adult human
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volunteers using a gradient-echo sequence (TR =n3)0TE = 4 ms, flip angle = 80°,
slice thickness = 5 mm, FOV = 256 mm, matrix = 286256 x 12) and later

downsampled to emulate the parallel imaging actjoisiprocedure. Parallel imaging
datasets were generated with outer reduction fa¢ORF) of 2, 3, and 4, respectively,

and different numbers of ACS lines.

3.3.2 Application to TGRAPPA

In TGRAPPA (9), adjacent undersampled time frantesuged as the calibration
data in the GRAPPA reconstruction process of argiiee frame. Since different time
frames may carry different sensitivity informatiam real time cardiac imaging, the
number of calibrating frames should be, in prineips minimal as possible (i.e. equals
the acceleration factor) to minimize the effect sansitivity mismatch and temporal
blurring. In the original TGRAPPA implementationpre than the minimum number is
used to improve the SNR with averaging of caliloratdata. In the present work, DCE
was applied to select the number of calibratingh#a and the kernel support in order to
achieve an optimal TGRAPPA reconstruction. Sinae hocedure for the selection of
kernel support is the same as described in theique\subsection, only the calibrating

frames selection is described here.

It was assumed (as per original implementation GRAPPA) that the optimal
set is comprised of consecutive frames nearesfréime to be reconstructed. For the
reconstruction of each frame, DCE was calculateccéibration data sets formed by its

neighboring frames, starting from the one with th@imum number of frames needed
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for calibration (i.e., the parallel imaging acceak&wn factor including the frame under

consideration) to a preset maximum. The minimunbcaion data sets fdR = 2, 3, and

4, respectively are shown in Figure 3.2a and tpessible increments are illustrated in

Figure 3.2b. This process was repeated for all desmpports to be examined. The

combination of kernel support and number of catibgaframes that minimized DCE was

taken as the optimal kernel parameter set.

(i)

(ii)

(iii)

o0 m
f

or

FUC FUC

QO m

o O 2 complementarily undersampled frames
O+ Q =® Composite fully sampled frame

(R=2)

FUC

©00O m
3

(R=3)

000 3 complementarily undersampled frames
©0+0+0:=@ Composite fully sampled frame

OO m
4

or

FUC

QO00m
3

FUC

(R=4)

0000 4 complementarily undersampled frames
0+0+0+0=0® Composite fully sampled frame

(@)

~QQ@ OQ0 OO m

QOO m
©O00 m
OO0 m
O0OO0LOCLOOCL OO

Frame under consideration (FUC) Time frames

(b)

Figure 3.2 Formation of the set of frames tekamined by DCE

The initial set (my) is formed with the minimum number of adjacent undersampled frames
necessary to form a complete dataset for calibratig which equalsR (including the frame under
consideration). (a) Possible configurations ah; assuming that only frames nearest to the frame
to be reconstructed contribute to the calibration pocess. (b) Formation of other setsn; by
addition of one frame at the time up to the maximumumber allowed by the dataset or user-
defined number.
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Real-time non-gated, non-breath-hold cardiac in@giras performed on a 1.5T
Siemens Avanto with a 15-channel cardiac matrix gsing a trueFISP sequence. Fully
sampled short-axis view cardiac data were acquateadrate of 7 fps on healthy subjects
(TR = 2.29 ms, TE = 1.15 ms, flip angle = 70°, slthickness = 8 mm, FOV = 360
264.38 mm, matrix = 258 56 x 15) and later downsampled in a time-interleaveasph
encoding scheme as described by Breeteal. (9). Three parallel MRI datasets were
synthesized with acceleration factoR) (2, 3, and 4, respectively. In all TGRAPPA
reconstructions performed here, the full extenthefk-space calibration data was used to

derive the GRAPPA weights.

3.4 Results

The dependence of DCE on the GRAPPA kernel dmegathe phase encoding
direction and the number of ACS lines for threeabbirain datasets downsampled with
ORF = 2 (top-left), ORF = 3 (top-center), and ORH top-right), respectively, is
presented in Figure 3.3a. For all plots in Figur®, 3he kernel size along the readout
direction was set to five. The asymmetric “U-shapatl location of the minimum along
the kernel size axis of each DCE plot virtually aiathose of the corresponding MSE
plot (Figure 3.3b) obtained under the same conastioThe observed trends were

consistent for other kernel sizes along the readwattion.
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Figure 3.3 Dependence of DCE and MSE erk#rnel size

Plots of (a) DCE and (b) MSE of human brain data vskernel size alongk, (when the
kernel size alongk, is fixed to 5) for different ORFs as indicated athe top of each figure.

The legends specify the number of ACS lines used @éach case.

Figure 3.4 presents GRAPPA reconstructed imagegyysi) a 4x 5 kernel, (b)
the 4x 5 kernel with regularization, (c) the sparse opted subset, and (d) the DCE-
identified kernel for 9 and 24 of ACS lines at ORE (Note that 24 ACS lines are a little

more than that used in Refs. (4,10)). The crossla@bn identified kernels for these
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datasets were the same as those selected by DCEharefore produced the same
images. The DCE-identified kernel supports were 2 (alongky x alongk,) and 3x 11
for 9 ACS lines and 24 ACS lines, respectively. raghical representation of these
kernels is given in Figure 3.4. The sparse-selekgedel support configurations varied in
all three dimensions (alorig, ks, and coil) and could not be represented graplyicalh
readily visualized form. The reconstruction with B@entified kernel exhibits reduced
artifacts and noise level compared to other metlasdadicated by the difference images.
When considerably large numbers of ACS lines weseduthe images generated by the
different methods are comparable but, as descriimdw, exhibit slightly different
amounts of error. Table 3.11 lists the error ofstheeconstructions for situations with
different ACS lines. In all cases, the DCE-selecteginel resulted in a smaller
reconstruction error than other methods. The DQecssd kernel size (CV-selected
kernel as well) increases with increasing numbeAGS lines. The DCE-kernel size
reaches a ceiling, due to the maximum number of AGS that can be used for a given
k-space data matrix size. For example, at R = 4pghienal kernel identified by DCE for
147 ACS lines (16 26) is the same as that for 196 ACS lines (fullSAides) since the
maximum number of ACS lines that can be used b6 & 26 kernel size at R = 4 with a

256 x 256 data matrix is 147.

At R = 4, the DCE-selected kernel support €&186) for maximum ACS lines was
used to reconstruct images with various sets ofefeACS lines and the results are

presented in Fig 3.5. It is evident that the DCeniified kernel support for a large
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number of ACS lines leads to significant recongtamcnoise when applied to data with

fewer ACS lines.

9 ACS lines 24 ACS lines
Image Difference (x10)

Image Difference (x12)

o 0 oo o o
[ 2 ®
(=} oo0ce
/ oo dooowo o
4 x

k-space sunset size
<+—168 396>

Figure 3.4 Comparison between reconstructiorhat= on brain data

() 4 x 5 kernel, (b) 4x 5 kernel with Tikhonov regularization, (c) sparseeptimized k-space
subset, and (d) DCE-identified kernel support. To lhe right of each reconstructed image, its
absolute difference with the non-accelerated imagg@ot shown) is shown. An ORF = 4 and two
different number of ACS lines (9 and 45) as indicad on the top of the two main columns were
used. The kernel diagrams used by the reconstructis are shown and the arrows are used to
associate each kernel to the corresponding reconstition. The configurations of thek-space
subsets used by the sparse method are complex sifiicearies along the 3 dimensionskg, k,, and
coil) and are not represented. Thek-space subset size has been chosen to match the sizthe
DCE-identified kernel.
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Figure 3.5 Influence of the ACS lines numbeithe optimal kernel

Reconstruction performance of the DCE-identified kenel when full ACS lines
are used versus different lower number of ACS lines(a) Reconstructed images
and corresponding absolute difference with the nomccelerated image, and (b)
mean square error.

The dependence of DCE on three TGRAPPA kernel biesa(kernel size along
k,, kernel size alongy, and number of calibrating frames) obtained frdva teal-time
cardiac dataset downsampled at R = 3 is shownguar€i3.6a. In each plot, two variables
were set to their optimal values while the otheswaried. For frames 2, 43, and 75, the

optimal parameters were {4, 21, 5}, {3, 23, 8}, afd, 17, 3}, respectively. The
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parameters in the bracket denote the optimal kesizel alondky, the optimal kernel size
alongky, and the optimal number of calibrating framespeesively. There is a virtually
identical match in the asymmetric “U-shape” andataan of the minimum between each
DCE plot and its corresponding MSE plot (Figure b3.®btained under the same

conditions.

Because the comparison between the different keypeinization methods was
already made above for GRAPPA, the DCE-optimizedRABPA was only compared to
the original TGRAPPA which uses 6 (fé&t = 2), 9 (forR = 3), or 12 (forR = 4)
calibrating frames and a*45 kernel. Figure 3.7 presents short-axis view ieardnages
reconstructedR = 3) using: (b) a 4« 5 kernel support and nine adjacent calibrating
frames as described in the original TGRAPPA (93 @) the DCE-identified numbers of
calibrating frames and the DCE-identified kerngbarts. The reconstructed images are
displayed with the same windowing setting for congmm. Below each reconstructed
image, its absolute difference from the full-datxided image (a) is displayed, with a
windowing setting that is much lower than that fire reconstructed image. A
guantitative comparison of the two TGRAPPA recandions in terms of MSE is shown
in Figure 3.8 for three different acquisition sclemm(a)R = 2, (b)R = 3, and (cR = 4,

computed for all frames. All plots have the samaesc
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Figure 3.6 Dependence of DCE and MSE on timelau of calibrating frames

Plots of (a) DCE and (b) MSE of dynamic cardiac dat accelerated atR = 3 vs. number of
calibrating frames (left), kernel size alongk, (center), and kernel size along (right). In each
plot, two variables were set at their optimal value and only one was varied. The legends
specify the frame number in each case.

3.5 Discussion
The shift invariance property of the reconstructigarnel in k-space-based
Cartesian parallel imaging has been essentialh®rdevelopment of other parallel MRI

reconstruction algorithms such as GRAPPA operatomélism (13) and iterative
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GRAPPA (14), both of which have found several aggilons (15-17). In this work, a
different exploitation of this shift invariance perty is demonstrated with the purpose of

optimizing and characterizing current reconstruttion parallel imaging.

Frame # 2 Frame # 43 Frame # 75

- — - — - = —

Reference

(@)

Original kernel settings
Image

Difference

(b)

Image

Difference

DCE-identified kernel settings

(c)

Figure 3.7 Comparison between reconstructiondymiamic cardiac data
(a) Nonaccelerated images used as reference, and R&PPA reconstructed images using (b)
original parameters, (c) DCE-identified parameters. The absolute difference of each

reconstructed image with the non-accelerated images shown right below the reconstructed
image.
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The mean square error as defined in this studyobas widely used to assess the
performance of parallel MRI reconstruction algamth but requires the full-data
reconstructed image (3,5,18,19). The plots in Fig883 and 3.6 show a strong
correspondence between our proposed data congisterar and MSE, suggesting that
the DCE is a suitable candidate for characteriamgrs ink-space-based parallel MRI
reconstruction algorithms. Unlike MSE, DCE does metd the full-data set. This unique
feature makes DCE an effective tool for optimiziegonstruction in parallel imaging.
The good correspondence between DCE and MSE atcates that DCE targets the

total error in the kernel optimization process.

The shapes of DCE and MSE plots as a function ofdtesize of Figure 3.3 and
Figure 3.6a demonstrate the conflicting demand etweconstruction model accuracy
and stability in GRAPPA reconstruction and are ¢sirat with the results reported
previously (2,3). GRAPPA reconstruction using thernel support that generated the
minimum DCE value shows a better tradeoff betweetifaat and SNR than
reconstruction using other methods (Figure 3.4)|88kl). The 4x 5 kernel was chosen
as a representative kernel used for GRAPPA. Thesspgpproximation method targets
the GRAPPA model error rather than the total eand therefore results in a larger
reconstruction error as compared to DCE methodlidihe data examined in this study.
The sparse optimizekspace subsets of sizes 168 and 396, respectivedd for the
reconstructions in Figure 3.4 were determined i 4&nd 349 s, respectively, using the

initial largerk-space subset of 18 x 12 (similar to that is used by Samsonov (5) with
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the exception of the number of coils). As a congmarj the corresponding DCE-
identified kernels were identified in 9 s and lIespectively, with a maximum search
size of 7x 18. Although these computation times should nodibectly compared as the
DCE method explicitly utilizes the locality criten (2) and does not vary the kernel
support with coils whereas the sparse method alltweskernel to vary along three
dimensions and uses the locality criterion only wkiefining the search space, they are
indicative of the computational efficiency of thesethods. Note that the DCE-identified
kernel support led to smaller reconstruction ermrsll the data examined in this study,

suggesting that the locality criterion is a googragimation.

For image space based reconstructions such agtisdigity encoding (SENSE
(20)), which has the appeal of a theoretical exaatition to the parallel imaging
problem, the role played by regularization is esiplsince it can considerably mitigate
the issue of noise amplification during matrix irsien (21). Ink-space based parallel
imaging reconstructions which are theoreticallyragpnate (22), the conditioning of the
reconstruction is largely implicit in the approxititea made in the reconstruction.
Regularization generally reduces noise at the ebgicreased artifacts ((5,19)). This is
confirmed by Figure 3.4b which shows a net noisgucton but with pronounced
artifacts as compared to the images without regaton (Figure 3.4a). It is evident that
the 4x 5 kernel is too large for the case where 9 AC8dliare used (Fig .3.4b, first
reconstructed image in the row), but the resultgests that regularization cannot
overcome this limitation whereas DCE can identifg kernel that mitigate the problem.

On the other hand, the comparable quality of thgulegized and non-regularized
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reconstructions with a 4 5 kernel for situations with abundant ACS linesi§le 3.1)

indicates the limited benefits of regularizatiorkispace based parallel imaging (23).

In some cases with large number of ACS lines, theszvalidation kernel choice
deviates from that of DCE (Table 1). This is likelye to the increase of the variance of
the true error rate estimator when leave-one-agszrvalidation (as used throughout this
study) is used in situations with large numbersasfiples (8). Unfortunately, the optimal

K-fold for a given dataset is yet to be determined.

One difference between the method described hede th@ cross-validation
approach we reported earlier (3) is that the foreamines data consistency with all
sampledk-space data and the latter only looks at the datesistency for ACS lines
which are usually centered in tlkespace. In other wordsjross-validation generally
focuses on low-resolution reconstruction error iagated by the ACS lines residing near
the k-space center, whereas DCE examines the reconstruetror at all acquired
resolutions. This difference resulted in a small improvement tire DCE based

reconstruction in some cases.

A K-fold cross-validationK>1), as described in (3), requires a computatiome ti
of approximatelyK-1 times that of DCE search to produce results Hrat at most
comparable. For example, with a maximum search s&te¢o 10x 10, the kernel size
searching algorithm using leave-on-out cross-véhaaon the anatomical data shown in

Figure 3.5 adds an additional time of 13-29 secoiventional GRAPPA reconstruction
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whereas the same search using DCE adds only 6:8Tkectime difference increases
with the number of ACS lines and the maximum kersige to be examined. The
computation time of DCE can be further improved d®fectively choosing the set of

acquired data needed for the determination of DCE.

A Original kernel settings ™ DCE-identified kernel settings
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Figure 3.8 Quantitative comparison betw&GRAPPA reconstructions

MSE is plotted as a function of frame number in edt case and for three parallel MRI
settings ()R =2, (b)R =3, (c)R=4.
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The DCE-selected kernel size was shown to incredieincreasing number of
ACS lines (Table 3.1). On the other hand, signifta@construction noise occurred when
the DCE-selected kernel support for maximum AC8diwas used to reconstruct images
with fewer ACS lines. This suggests that the sekerhel supports to be examined by
DCE may be adjusted according to the number of AG& in order to improve the

efficiency of the search.

At the acceleration factor of 3, the DCE methodhwi8 ACS lines produced
better reconstruction than GRAPPA with ax45 kernel with 36 ACS lines. Similar
behavior is also seen at the acceleration factod.oThis observation suggests that
GRAPPA can be performed with a fewer number of Alifes while preserving
reconstruction quality even at high outer reducfactor. The ability to reduce the ACS
lines needed is expected to be beneficial for apptn requiring internal calibrating

lines and where temporal resolution is important.

A limitation of the searching strategy adopted herthe assumptions of locality
criterion (2) in forming the set of kernel candekats described by Nana et al. (3) and the
fixed configuration of the kernel along the coihr@insion. Although all possible kernel
configurations could be examined with DCE in pnpiej it is impractical due to
computational burden. Nonetheless, the DCE-idewtikernel shows a better or at least
equal performance compared to other methods faftaadl tested in this study, suggesting

that these assumptions are reasonable.
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DCE and MSE plots in Figure 3.6 (left column) dermstoate the influence of the
number of adjacent calibrating frames on TGRAPPgonstruction performance. In
most cases, the plots exhibit an asymmetric “U-shagemonstrating a conflicting
demand between reconstruction accuracy and stabgita result of including different
number frames in the calibration data set. Theem®e in the number of calibrating
frames reduces the effect of noise (as a resudvefaging) during the GRAPPA weights
estimation but at the same time increases the duerto sensitivity mismatch between
different calibrating frames. The number of calibrg frames that generated the
minimum DCE corresponds to a suitable compromigevdxen these two errors. The
variation of the location of the minimum of DCE plor different frames indicates that
the use of a fixed number of calibrating framesdibframes (as it is the case for original
TGRAPPA) is unlikely optimal. The variation of theptimal number of calibrating
frames with the frame number may be explained lspiration-induced chest wall
excursions. The images reconstructed using the [D€Rified kernel support and the
DCE-identified number of calibrating frames exhiaisignificant reduction in noise and
artifacts compared to those using the original T®RA reconstruction parameters as
indicated by the difference images of Figure 3.7.g#antitative assessment of the
performances of these three strategies using M®Bwrs in Figure 3.8, clearly
demonstrates that the reconstruction using the RIERtfied kernel parameters
outperforms the original TGRAPPA. The consideralifierence between the two
reconstructions is likely due to fact that 1) thexriel support was also optimized in the

DCE optimized reconstruction and 2) our experimenmtataset was acquired at a
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relatively low rate (7 frames per second), makimgmie to frame variations more

substantial and possible errors due to using nrarads in the reconstruction larger.

Table 3-1 Comparison between reconstruction meaarscgrror

Brain image errors of GRAPPA reconstructions obtained using: 4 x 5 support, 4 x 5 support
with Tikhonov regularization, sparse-optimized k-space subset, CV-identified kernel, and the

DCE-derived kernel supports, respectively.

o L T T RS Reomoror PENE et entes
lines (4x5) regularization) kernel) kernel) size size
2 1762 1026 808 690 690 2x3 2x3
12 433 428 417 405 405 2x6 2x6
2 24 395 394 383 362 362 4x7 ax7
FULL 356 353 322 329 313 20x23 2x30
6 1109 937 546 502 502 2x5 2x5
18 489 473 445 433 433 2x10 210
3 36 440 438 428 419 414 4x9 4x12
FULL 422 421 367 351 340 16x21 16<30
9 1501 1134 657 572 572 2x7 27
24 649 583 521 483 483 3x11 11
4 48 534 531 455 443 423 4x11 4x13
FULL 503 501 386 370 356 16x19 16x26

The data consistency error introduced here is gpjate for characterizing and
optimizing all k-space based parallel MRI reconstruction algoritithet assume the
kernel to be partially or totally shift invariam k-space. For example, DCE procedure

can be applied to non-Cartesian reconstructionrighgons that divide thek-space into
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sectors and assume shift-invariant sector-spefonstruction kernels (24-28). In this
case, the kernel parameters need to be optimizgdrsgise and the sum of the resultant

DCE values may be used.

3.6 Conclusions

In this paper, we have introduced a new data ctamig error (DCE) that can be used for
validating, characterizing, and optimizingspace-based reconstruction in parallel
imaging. DCE was applied to automatically selec¢ thptimal kernel support for
GRAPPA reconstruction and the optimal set of franfies calibration process in
TGARPPA reconstruction. Compared to existing keomimization methods, the result
is an optimized tradeoff between artifacts and eaisthe reconstructed images. The new
data consistency error is easy to evaluate, rdouselecting reconstruction parameters,
and can be applied to altspace based parallel MRI reconstruction algoritrtirest

assume the kernel to be partially or totally simtariant ink-space.

3.7 Chapter 3 References

1. Larkman DJ, Nunes RG. Parallel magnetic resaamaging. Phys Med Biol
2007; 52(7):R15-55.

2.  Yeh EN, McKenzie CA, Ohliger MA, Sodickson DKarallel magnetic resonance
imaging with adaptive radius kispace (PARS): constrained image reconstruction
usingk-space locality in radiofrequency coil encoded ditagn Reson Med 2005;
53(6):1383-1392.

93

www.manaraa.com



10.

11.

Nana R, Zhao T, Heberlein K, Laconte SM, Hu Xo<3-validation-based kernel
support selection for improved GRAPPA reconstructiblagn Reson Med 2008;
59(4):819-825.

Qu P, Shen GX, Wang C, Wu B, Yuan J. Tailoralization of acquiredk-space
points for GRAPPA reconstruction. J Magn Reson 200%(1):60-67.

Samsonov AA. On optimality of parallel MRI reabruction ink-space. Magn
Reson Med 2008; 59(1):156-164.

Griswold MA, Jakob PM, Heidemann RM, Nittka Mgllds V, Wang J, Kiefer B,
Haase A. Generalized autocalibrating partially paraacquisitions (GRAPPA).
Magn Reson Med 2002; 47(6):1202-1210.

Golub G, Van Loan C. Matrix computations. Batii®: Johns Hopkis University
Press; 1983.

Cawley G. Leave-one-out cross-validation baseodeh selection criteria for
weighted LS-SVMs. IEEE, Neural Networks, IJCNN 'O6ternational Joint
Conference on 2006:1661-1668.

Breuer FA, Kellman P, Griswold MA, Jakob PM. @ynic autocalibrated parallel
imaging using temporal GRAPPA (TGRAPPA). Magn Resbled 2005;
53(4):981-985.

Wang Z, Wang J, Detre JA. Improved data recoasbn method for GRAPPA.
Magn Reson Med 2005; 54(3):738-742.

Hansen P. Rank-deficient and discrete ill pogexblems: numerical aspects of

linear inversion. Philadelphia: SIAM; 1998.

94

www.manaraa.com



12.

13.

14.

15.

16.

17.

18.

19.

20.

Johnston PR, Gulrajani RM. Selecting the corimethe L-curve approach to
Tikhonov regularization. IEEE Trans Biomed Eng 2000(9):1293-1296.
Griswold MA, Blaimer M, Breuer F, Heidemann RMlueller M, Jakob PM.
Parallel magnetic resonance imaging using the GRABPBerator formalism.
Magn Reson Med 2005; 54(6):1553-1556.

Zhao T, Hu X. lterative GRAPPA (iGRAPPA) for pnoved parallel imaging
reconstruction. Magn Reson Med 2008; 59(4):903-907.

Blaimer M, Breuer FA, Mueller M, Seiberlich NEbel D, Heidemann RM,
Griswold MA, Jakob PM. 2D-GRAPPA-operator for fase® parallel MRI. Magn
Reson Med 2006; 56(6):1359-1364.

Blaimer M, Kellman P, Griswold MA. Dynamic pdeh MRI using the temporal
GRAPPA-operator (TGRAPPA-Operator). In: Proceedimgsthe 15th Annual
Meeting of ISRMRM, Berlin, Germany, 2007. p.3339.

Nana R, Zhao T, Heberlein K, Zuehlsdorff Seder R, Hu X. Iterative GRAPPA
(IGRAPPA) for dynamic parallel imaging. In: Proceegs of the 16th Annual
Meeting of ISRMRM, Toronto, Canada, 2008. p.3668.

Willig-Onwuachi JD, Yeh EN, Grant AK, OhligerAl McKenzie CA, Sodickson
DK. Phase-constrained parallel MR image reconsbouct] Magn Reson 2005;
176(2):187-198.

Qu P, Wang C, Shen GX. Discrepancy-based adapggularization for GRAPPA
reconstruction. J Magn Reson Imaging 2006; 24(By235.

Pruessmann KP, Weiger M, Scheidegger MB, Beesky SENSE: sensitivity

encoding for fast MRI. Magn Reson Med 1999; 42(%2:962.

95

www.manaraa.com



21.

22.

23.

24,

25.

26.

27.

28.

Lin FH, Kwong KK, Belliveau JW, Wald LL. Parallimaging reconstruction using
automatic regularization. Magn Reson Med 2004; p35®-567.

Sodickson DK. Tailored SMASH image reconstiutsi for robust in vivo parallel
MR imaging. Magn Reson Med 2000; 44(2):243-251.

Hoge WS, Brooks DH, Madore B, Kyriakos WE. Atof accelerated parallel MR
imaging from a linear systems perspective. Conddjgign Reson A 2005;
27A(1):17-37.

Samsonov AA, Block WF, Arunachalam A, Field ASdvances in locally
constrainedk-space-based parallel MRI. Magn Reson Med 200&)58{1-438.
Heberlein K, Hu X. Auto-calibrated parallel igppiimaging. Magn Reson Med
2006; 55(3):619-625.

Heidemann RM, Griswold MA, Seiberlich N, Kruggr Kannengiesser SA, Kiefer
B, Wiggins G, Wald LL, Jakob PM. Direct parallelage reconstructions for spiral
trajectories using GRAPPA. Magn Reson Med 200626817-326.

Huang F, Vijayakumar S, Li Y, Hertel S, RezaDsiensing GR. Self-calibration
method for radial GRAPPA/k-t GRAPPA. Magn Reson M#D7; 57(6):1075-
1085.

Arunachalam A, Samsonov A, Block WF. Self-calted GRAPPA method for 2D

and 3D radial data. Magn Reson Med 2007; 57(5)933.-

96

www.manaraa.com



CHAPTER 4. PASSIVE TRACKING OF THE CALIBRATION
INFORMATION CHANGE USING DATA CONSISTENCY
ERROR TO IMPROVE RECONSTRUCTION EFFICIENCY

AND ACCURACY IN DYNAMIC PARALLEL IMAGING  °

In parallel dynamic imaging such as TGRAPPA [1],ltiple adjacent time frames
are merged to form the calibration dataset forrdwnstruction of a given frame. In the
TGRAPPA implementation, the reconstruction weigate determined for every time
frame, which may result in long reconstruction timén applications such as free
breathing cardiac and abdominal imaging, the rasipim induced coil sensitivity change
is cyclic in time suggesting that multiple frame®rg the time course may have
approximately the same calibration information. sSTbhapter presents a simple passive
approach that utilizes the data consistency eBDQH) introduced in chapter 3 to provide
a goodness measure of the frame-to-frame coil ®ahsinformation change in parallel
dynamic imaging. This tracking information is sutpsently used to identify the frames
sharing calibration dataset and avoiding using msient calibrating frames, leading to
an efficient and accurate reconstruction. The ouktls demonstrated using vivo

cardiac imaging data.

® A manuscript has been prepared for the work im ¢hapter for publication in Magn Med Reson Baria
R, Hu X. Automatic Passive Tracking of the Fram&+ame Calibration Information Change To Improve
Reconstruction Efficiency in Dynamic Parallel Imagfi
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4.1 Introduction

Imaging a moving object with MRI often poses namiéi challenges, as high
acquisition speeds may be required to resolve emzf its temporal variations. Parallel
imaging (1) has been proposed to increase the ngapeed by acquiring just a fraction
of needed data. Parallel imaging reconstructs mhage from the reduced dataset by
relying on prior knowledge about the array of rgeeicoil sensitivities. The coil
sensitivity information is generally obtained thgbuan additional reference experiment,
thereby degrading the efficiency of the parallelaging experiment. In dynamic
application such as free breathing cardiac imagiitg flexible cardiac matrix coils, the
coil sensitivities change in time due to respinatinduced chest wall movement. This
poses an additional challenge to parallel imagimges sensitivity mismatch may be

present between the reference data and the datcbftime frame.

The generalized auto-calibrating partially paralktquisition (2,3) has been
recently extended to dynamic experiments that agfopmed with an interleaved
acquisition scheme (4,5) such that the sensitimiiyrmation necessary for reconstruction
is directly obtained from the actual acceleratethd&his so called temporal GRAPPA
(6) permits the realization of the full image aecation since several adjacent
undersampled time frames can be merged to formfuthecalibration dataset for the
GRAPPA reconstruction of a given frame. In thiggoral implementation of TGRAPPA,

the reconstruction weights are determined for etiemg frame, which may result in long
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total reconstruction times. Since respiration iretlicoil motion generally occurs more
slowly as compared to the frame acquisition ratehas been suggested that the
reconstruction coefficients may be updated much fesquently in order to improve the
overall reconstruction time without significant dadation of the image quality (6).
However, finding how often the weights need to bdated may not be a simple task as
this may vary with acquisition conditions. In priple, the knowledge of the respiratory
induced chest displacement, generally cyclic, map improve both the calibration and
the total reconstruction time since many framesnglohe time course may carry

approximately the same sensitivity information.

This chapter presents a method that utilizes antBcantroduced data consistency
error (DCE) metric (7), which provide a simple m@&&sof reconstruction error &
space interpolation for Cartesian parallel imagitagprovide a consistency measure of
the frame-to-frame calibration information in pdéhldynamic imaging. This tracking
information is subsequently used to identify thanfes sharing calibration dataset and
avoiding using inconsistent calibrating frames,dleg to an efficient and accurate

reconstruction. The method is demonstrated usimgyo cardiac imaging data.

4.2 Methods
4.2.1 Review of DCE
DCE was recently introduced to provide a simple suea of reconstruction error

of k-space interpolation for Cartesian parallel imagfip It has been proven useful to
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select parameters for an optimal reconstructionisltdefined as the mean square
difference between the acquired data and theimes#is obtained by interpolation of the
estimated missing data. The missing data and #digied acquired data are interpolated
using the same kernel (shift invariance propertyhefkernel). The implementation steps
for computing GRAPPA-type DCE are as follows: (Brive the GRAPPA weights using
the calibration information; (ll) Fill in the misyy lines of all coils; (Ill) Predict the
acquired lines from the filled missing lines usitige same GRAPPA weights; (IV)
Compute the mean square difference between tharaddines and their estimates. In
this study, the calibration dataset is the varyinfprmation used to track the coil

sensitivity information relative changes in timengsDCE.

4.2.2 Segmenting the time frames based on their calibradn information

In our implementation of the frame-to-frame caltva information tracking
procedure, the set of interleave-undersampled fsamedivided into blocks starting from
a designated reference frame and expanding alandirtte course as indicated in Fig.
4.1. A block consists oR consecutive frames with distinct sampling patteld€E
values of the reference frame are calculated foh &ock used as the calibration dataset.
We assume that each DCE value provides a simplsuneaf the sensitivity mismatch
that exists between the reference frame and theeBaof a given block and therefore
reflects the coil sensitivity changes. During tlaécalation of DCE, the mean square error
between the images reconstructed from the undepisanand fully sampled reference
frame, respectively, is output for comparison. Asswyg the coil sensitivity changes

smoothly in time and that the acquisition rateasstant, the DCE values reflecting the
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sensitivity mismatch between a given frame andréierence frame is determined by
linear interpolation of the block-based DCE valoéghe reference frame. The relative
change of DCE values within which the frames aseia®d to share the same calibration
information is chosen empirically to be the averaf¢he differences between the DCE
values of two consecutive frames in the time cauildee time frames sharing the
calibration information are merged to derive theorestruction weights which are

subsequently used to reconstruct each of them.

4.2.3 Data acquisition and reconstruction

Non-gated free breathing cardiac experiments wertopned on a 1.5T Siemens
Avanto with a 15-channel cardiac matrix coil usegrueFISP sequence. Fully sampled
short-axis view cardiac data were acquired at@ oa7.80 fps on healthy subjects (TR =
2.29 ms, TE = 1.15 ms, flip angle = 70°, slice khiess = 8 mm, FOV = 368 264.38
mm, matrix = 256x 56 x 15) and later downsampled in a time-interleavedsph
encoding (PE) scheme as described in (6). Addilipn&uly accelerated outflow track
cardiac view data were acquired at rates 10.73Rps 2), 16.09 fps (R = 3), and 21.45
fps (R = 4). The common acquisition parametergHeraccelerated data were: TR = 2.39
ms, TE = 1.02 ms, flip angle = 71, slice thicknes8 mm, FOV = 350 x 263 mm, and

matrix size = 176 78 x 15.
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OCOPLYPIPGLYPLYOO

T Reference frame

o O Block of 2 complementarily sampled frames

O+ O:@ Complete composite frame

(@)

DOYPOYPOYPOYOOO

T Reference frame

© @O @ Block of 3 complementarily sampled frames

O+G +o= @ Complete composite frame
(b)
POCOPOOYOLOOCYOOOL

TReference frame

O O G O Block of 4 complementarily sampled frames
O+O+0O+Q =@ complete composite frame
(©)

Figure 4.1 Formation of the blocks of frame be examined by DCE

(@ R=2; (b)R=3; () R =4. R-1 complimentary sampled frames neighboringhe
reference frame are selected to form the referencélock of R consecutive frames.
Depending the position of the reference frame, thiprocess is repeated by expanding along
the time course in both directions. Other configuréions of the block are possible (position
of the reference frame within the reference block).

The sensitivity tracking procedure described presip was applied to the
accelerated cardiac datasets to identify the frathas share approximately the same
calibration information. For the offline-accelerdtelataset, the reconstruction mean

square error (MSE) was output during the DCE comjput for comparison. Here MSE

is defined by MSE=YN|I(n)- Iref(n}2 /I N where | represents the GRAPPA
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reconstructed imagd,e; is the full-data reconstructed image,is the total number of
pixels, andn is the pixel index. The optimized TGRAPPA recoanstion was compared
to the original TGRAPPA. In all TGRAPPA reconstiiocis, the full extent of thé-

space calibration data was used to derive the GRARPBIghts. All algorithms were
implemented in MATLAB (The Mathworks Inc., Natick Ml USA) on a Pentium 4 CPU

2.00 GHz computer with 1GB RAM.

4.3 Results
Figures 2a, 2c, and 2e present the dependence Bf \{lies on the block of
frames generated according to Figure 4.1 for cardeédasets offline downsampledRat
2, R = 3, andR = 4 respectively. The plots were generated usmyg tlifferent kernel
supports corresponding tox25, 2x 9, 4x 5 and 4x 9 as indicated by the legend. The
shape and locations of the peaks and valleys almmglock of frames axis of each DCE
plot virtually match those of the corresponding M3t (Figs. 3b, 3d, and 3f) obtained

under the same conditions.

Application of our frame segmentation procedurettuen DCE plot of any of the
kernel support results to 14 groups of frames fer & 9 groups of frames for R = 3, and
7 groups of frames for R = 4. Figure 4.3 preseisrtsaxis view cardiac images
reconstructed using (b) the original and the (c)inoged TGRAPPA. These frame
images were picked from the same group but araddcat different phases of the DCE

plots. In all cases, a% 5 kernel was used. The reconstructed images aptdagied with
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the same windowing setting for comparison. Belowheaeconstructed image, its
absolute difference from the full-data reconstrdctmage (a) is displayed, with a
windowing setting that is much lower than that fibre reconstructed image. A
guantitative comparison between the two reconstmstis illustrated by the MSE plots
of Figure 4.4 generated for all frames and foredght acquisition schemes: @) 2, (b)

R=3,and (cCR=4.

The dependence of DCE on the block of frames ftnuly accelerated data is
shown in Figure 4.5 for three acceleration factord for four kernel supports. Examples
of images reconstructed by the two strategies larstrated in Figure 4.6. Below each
reconstructed image, a magnified copy of the im&geshown to demonstrate the
significant reduction in the background artifactsnfi undersampling when the optimized
reconstruction is used. The segmentation of thedsausing our tracking strategy lead to
13, 11, and 14 groups for acceleration factor &&,8nd 4 respectively for all four kernel

supports used. The total computation times of these strategies are summarized in

table 4.1.
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—O— 2 x5 kernel —O— 2 x 9 kernel —2— 4 x5kernel O— 4 x9kernel

Block of frames Block of frames

Block of frames

Block of frames Block of frames

Figure 4.2 Dependence of DCE and MSE on thekbbf frames
Plots of DCE (a, c, and e) and MSE (b, d, and f) agputed on the offline downsampled
dynamic dataset as a function of block of frames. e three rows correspond to 3 parallel

MRI settings, R = 2 (top), R = 3 (center), andR = 4 (bottom). Four different kernel supports
corresponding to 2x 5, 2x 9, 4x 5 and 4x 9 were used as indicated by the legend.
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Frame # 2 Frame # 34 Frame # 63

Reference

(@)

Imaae

Original TGRAPPA

Difference

(b)

Optimized TGRAPPA
Imaage

Difference

(c)
Figure 4.3 Comparison between reconstructed eémag

(a) Non-accelerated images used as reference, (bjigmal, and (c) optimized
TGRAPPA reconstructed images R = 3). The absolute difference of each
reconstructed image with the non-accelerated images shown right below the
reconstructed image.

4.4 Discussion
The plots of Figs. 2 show a strong corresponderetevden DCE and MSE, a
similarity consistent throughout the data usedhis study and also consistent with the
observations reported in ref. (7). These plots l@kha cyclic pattern, indicative of
respiration-induced changes. Additionally, the nemsbof cycles~ 2.25) on all plots of

Figure 4.2 are identical, indicating that our tiftames arrangement strategy of the
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offline downsampled datasets does not affect timebau of respiration cycles with which
the original fully sampled data were acquired. Remnore, there is a strong similarity
between the shapes of the plots generated usifegatt kernel supports as indicated by
the plots of Figs. 2 and 5, suggesting that ouckirey strategy is independent of the
kernel support. All these findings corroborate watlhr assumption that the DCE values of
the reference frame reflect the sensitivity mistascthat exist between the reference

frame and the block of frames.

The images reconstructed using the optimized TGRMRBRow a noticeable
quality improvement over those reconstructed usiegoriginal TGRAPPA as indicated
by the difference images of Figure 4.3 and the zmbnegions of reconstructed images of
Figure 4.6. This performance is further confirmedtbe results of Figure 4.4 which
compares the MSE of the two strategies on theeedt{inamic datasets. It is important to
mention the overall low quality reconstructed immdgeom the offline downsampled
datasets as compared to that of the truly accelérdatasets for both reconstruction
strategies. The smoothness of DCE plots of the atelerated datasets as compared to
those downsampled offline goes along with this oketen. This is understandable
because downsampling dynamic datasets offline dosis change the sensitivity
mismatches that already exist between fully acquirames (and eventually between
lines of a frame) but, instead, can only complictie sensitivity mismatch when the
undersampled data are merged (even with a minimalber of frames) to derive the
calibration information. The offline datasets wesed just for simulation to confirm the
correspondence between DCE and MSE in the presamiext and to provide a

guantitative comparison of the image qualities ivletd by the two strategies.
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Figure 4.4 Quantitative comparisetween TGRAPPA reconstructions

MSE is plotted as a function of frame number for thiee parallel MRI settings
@R=2,(b)R=3, (c)R=4.

The optimized TGRAPPA results in considerably restli¢otal reconstruction

times compared to the original TGRAPPA as indicatedtable 1.

In the original

TGRAPPA, more time is spent in the reconstructiaights estimation which normally

increases with kernel size, acceleration factod, mmmber of ACS lines. This justifies the

increase of the difference in computational timehagher acceleration factors. The

optimized TGRAPPA total reconstruction time carcbasiderably reduced by restricting
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the computation of DCE in the center parkedpace (as opposed to the enkigpace as

done in study) or/and by increasing the range oED@lues within which the frames are
assumed to share the same sensitivity informapoovided that this increase does not
adversely affect the quality of the images. The potational time difference between

these two strategies is expected to increase nafeasing number of frames.

The DCE range within which the frames are assurnethare the same sensitivity
information has been chosen empirically to be thexage of the differences between the
DCE values two consecutive frames the time coufbsés choice prioritizes blocks of
frames located at different phases along the timerse over neighbor consecutive
blocks. This choice also takes into account theabdity that may exist in the respiration
rate and is therefore adaptable to a given dynasaiaset. Other ranges may be
envisioned. For example, choosing the range to%ebthe dynamic range of all DCE
values seemed to produce comparable results (natrgtfor all the data analyzed in this

study. However, this fixed percentage may be ingyppate for datasets acquired under

other conditions.
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—O— 2 x5 kernel

—— 2 x 9 kernel

—O0— 4 x9kernel

—A— 4 x5 kernel

Block of frames Block of frames

(b) (c)

Figure 4.5 Dependence of DCE on block @mies on the truly-
accelerated outflow track cardiac view dataset

The three rows correspond to 3 parallel MRI setting, R = 2 (top),R = 3 (center), andR =
4 (bottom). Four different kernel supports correspading to 2x 5, 2x 9, 4x 5 and 4x 9.

Table 4-1 Comparison between the total reconstmitimes (in sec)

R=2 R=3 R=4
107 frames 128 frames 128 frames
Original TGRAPPA 312 461 514
Optimized TGRAPPA 213 267 243

It is important to note that the use of any otlianfe (except the last frame for R

= 2, the first frame and the last frame for R =aBd the first frame and the last two
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frames for R = 4, due to our proposed block comfigjan) as the reference frame did not
significantly affect the results presented in thiigsdy. However, it should also be noted
that once the reference frame is chosen there mawgdny possible block configurations
(different positions possible of the reference feaim the reference block). Our proposed
block configuration follows a locality criterion, hich suggests that the sensitivity
mismatch between two frames within the same respiraphase diminishes with

decreasing distance (in time) between the two feame. selected frames that make up
the reference block should be as close as possible reference frame. This is

understandable because the frame acquisition sagenerally constant and coil motion
caused by respiration varies smoothly. Nonethelass, have investigated all other

possible configurations and did not see any adgand&er the proposed configuration.

The number of frames carrying approximately the esa@nsitivity information
increases with the number of respiratory cycleseoced during data acquisition,
potentially leading to better reconstruction agsutt of improved SNR of the calibration
dataset. However it is important to point out tiia dynamic dataset is acquired during
less than half of a respiration cycle, the calibratdataset may only contain the strict
minimum number of frames (equal to the acceleratamtor), and in this case there is no
guarantee that our propose method can produce bestdt than the original TGRAPPA.
In such a rare situation, the original TGRAPPA restauction is advised. Additionally,
for real-time on-the-fly image reconstruction, auethod would require a delay of at
least a respiration cycle. If online reconstructisnthe main interest (i.e. no need to

improve the image quality), then our proposed s$mityi tracking strategy can be
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coupled with the original TGRAPPA just to determihew often the reconstruction
weights need to be updated. In this case the kmmelef the preset threshold DCE
value, under which the reconstruction weights do meed to be updated, is required.

This threshold could be a percentage change oD@ value of the block from which

the new set of reconstruction weights is derived.

Frame # 2 Frame # 63

Original TGRAPPA
Image

Image x 10

(@)

Optimized TGRAPPA
Image

Image x 10

(b)
Figure 4.6 Reconstruction results of two différeutflow track view framesR = 3)
(a) original and (b) optimized TGRAPPA reconstruced images. Below each reconstructed image,

a magnified copy of the image is shown to demonste the significant reduction in the
background artifacts (indicated by the arrows) fromundersampling.
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An alternative to our blockwise arrangement of tly@amic dataset, which only
considersRk consecutive frames along the time course, isnm fihe set of blocks without
any restriction by combining the reference framéhvaill possible combinations of R-1
complimentary frames that exist within the dynami@étaset. The implementation of this
strategy did not show any noticeable image qualifyrovement on our proposed method
but added a considerable computational time penaéhig is understandable because the

respiration occurs much more slowly than the adrnaahe acquisition rate.

4.5 Conclusions
We have introduced and demonstrated a strategyctratbe used to passively
extract a goodness measure of the frame-to-fratagve sensitivity information change
in order to improve reconstruction efficiency of R&PPA in free breathing cardiac
imaging. Compared to the original TGRAPPA recordtan, the proposed method
results to a considerably reduced total reconstmdime while improving or at least

maintaining the image quality.
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CHAPTER 5. NON-CARTESIAN PARALLEL IMAGE RECONSTRUCTION
WITH DECONVOLUTION OF UNDER-SAMPLED GRIDDING

(DUG) IN K-SPACE’

In this chapter, a new algorithm is introduced tatHer improvements in
computation times and reconstruction efficiencygdarallel imaging using non-Cartseian
trajectories. The new method, non-Cartesian prdalhage reconstruction with
deconvolution of under-sampled gridding (DUG), @pes on griddeck-space and
exploits the energy distribution during the gridgliprocess to segment the gridded data
for an efficientk-space interpolation. Compared to existing meth@d$G results in an
improved and faster reconstruction. The effectigsn® the method is demonstrated with

in vivo spiral and radial data.

5.1 Introduction
Parallel imaging is currently an integral part oignetic resonance imaging owing
to its ability to increase the acquisition speedlevheducing imaging artifacts and the

specific absorption rate (SAR). To date, most palrénaging approaches are based on

" A manuscript has been prepared for the work i ¢thiapter for publication in Magn Reson Med as ‘&an
R, Zhao T, Hu XAn Efficient and Reliable GRAPPA Reconstructionhmetfor non-Cartesian Parallel
Imaging'. Preliminary results have been presented as “Zhabana R, Hu XAn efficient and General
GRAPPA method for non-Cartesian Parallel Imagiris” Annual Meeting ISMRM; 2007; Berlin,
Germany. P 337.” TZ was responsible for implemantihe main idea while RN was responsible for
developing the theory and simulation that suppbd idea, optimizing the GRAPPA reconstruction
weights, and applying the strategy to radial tr@jpc
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sampling on Cartesian grid in ttkespace and the sampling reduction is applied mostly
along the phase-encoding direction(s) (1). Depaendim the applications, non-Cartesian
trajectories may be advantageous and desired (Rer)parallel imaging, non-Cartesian
trajectory has the added advantage in that thectieduin spatial encoding can be
achieved in multiple directions naturally. Howevparallel imaging with non-Cartesian

trajectories is somewhat hampered by the difficirtyeconstruction.

Parallel image reconstruction with Cartesian sangpi relatively simple, owing to
its shift-invariance property in either the imagaece or thé-space. With non-Cartesian
trajectory, parallel image reconstruction becomesendifficult as the shift invariance is
no longer present. In the image domain, aliasimghtm-Cartesiak-space trajectories is
highly complex, as every pixel can contain a cawttion from all other pixels in the
entire field of view (FOV). While direct inversiaio simultaneously solve for the true

pixel intensities is possible in principle, it ismputationally impractical.

Iterative solutions of the matrix inversion haveebeproposed (8,9), but these
methods tend to be somewhat time consuming. Sek«sgzce approaches, which do not
require iteration, have also been proposed. Widseéhmethods, missingspace data
points are estimated through interpolation of tbquired data. Most of these are based
on either PARS (9) or GRAPPA (10). The main differe between the two is that the
former explicitly utilizes sensitivity maps in deing the reconstruction weights while the
latter usek-space calibration data. In PARS, the reconstrodternel can be dependent

on thek-space location in general and can be applied titramnp k-space sampling. An
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extension of this approach in which a reduced nunabekernels are used is possible

(11).

In GRAPPA, the reconstruction kernels derived watdibration measurements
implicitly account for coil-sensitivity informatianin the Cartesian case, shift-invariance
in the k-space is utilized such that a single globally mevat kernel can be used to
synthesize missing signals with a given shift ie Kaspace relative to the acquired
signals. In the case of non-Cartesiirspace trajectories (e.g. radial and spiral
trajectories), the kernels are no longer shift mard, and rigorous GRAPPA
reconstruction requires different reconstructiomnkés for each missing datum because
an invariant kernel is not applicable. Consequerttlg reconstruction process can be
very time consuming, and the use of GRAPPA is kahiin non-Cartesian sampling. To
overcome this difficulty, several authors have jos®a dividing thék-space into sectors
and assuming the kernel within each sector to Ipeoxpmately the same (12-14). This
segmentation of th&-space exploits the radial symmetry inherent toas@nd radial
trajectories. In these methods, the missing dadiest GRAPPA synthesized followed
by a gridding (15,16) process that interpolatesrtbe-Cartesian data onto a rectilinear
grid. Transforming the accelerated data onto Ciamegrid following with GRAPPA

interpolation has also been proposed (17,18).

A successful non-GRAPPA, non-PARS, and non-iteeaigsek-space algorithm

has been recently introduced which formulates émemstruction problem as a system of

sparse linear equations kaspace from which the solution is obtained by cotimgua
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sparse approximation inverse matrix. The methodfesuf from a considerable
computational load (even heavier than that of iteeaSENSE (8)) for a single image
reconstruction but may be useful for applicatiohat trequire repetitive measurement
such as functional MRI (19) and diffusion tensoagimg (20,21) since the results of the
first reconstruction can be applied to reconstautisequent images in a relatively shorter

time.

Despite the successes of the existing algorithms;ammercial scanner currently
supports reconstruction of undersampled non-Cartésspace data. This suggests that it
remains a challenge to efficiently reconstructraage from undersampled non-Cartesian
k-space data. This chapter presents an efficientralaible reconstruction strategy for
parallel imaging with a strong potential of onlireconstruction. The method operates on
gridded k-space and exploits the energy contrilbbutibeach acquired signal during the
gridding process to identify each group of griddesbace data that can be synthesized
with the same reconstruction kernel. As it turng, dbe number of kernels per coil
necessary to synthesize the gridded data can beaddo the acceleration factor, leading
to a computational effort (excluding the calculatiaf the gridding table) comparable to
normal Cartesian GRAPPA. The basis of the griddespace data segmentation for
efficient reconstruction is first provided througimulation. Then the effectiveness of the
new method, non-Cartesian parallel image reconstruavith deconvolution of under-
sampled gridding (DUG), is demonstrated inrnvivo data and compared to segmented

GRAPPA (12,14).
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5.2 Theory

Conventional convolution gridding methods (16) assuthat the non-Cartesian
data fulfill the Nyquist criterion at ak-space locations. Therefore, applying gridding on
undersampled non-Cartesian data may add griddirggseand thereby complicate the
parallel MRI reconstruction problem. In this sentiove first demonstrate that it is
possible to apply a weighted average interpoladiescribed by a kernel on data that has
been gridded using conventional gridding approaclyenerate an artifact free image.
Because our demonstration builds upon the PARSgBndlation, a brief review of

PARS reconstruction is provided first.

5.2.1 Review of PARS reconstruction
Thel™ receiver coil oL, with sensitivityh(r), | = 1, ...,L, collects signal from an
object f(r) over a volume of interest (VOI) at thespace positiork, that can be

represented by
s(k)=[ & h(r)f(r)dr [5.1]

In this article, it assumed that the signal is dashpn non-Cartesian grids described by
k.. In PARS, an un-acquired datum of a given coi ¢e synthesized by linearly

combining acquired signals from all coil data ahd tinal image can be obtained by root
sum of squares of individual coil images. This peore can be mathematically

represented by

st= 3 S (k) s k). [5.2]

udn p 1'=1
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wherek. represents th&space position of the Cartesian sample to be mated that
provides a predefined FOV and resolution, respebtivil,p is the set ofk-space

samples, within the radiusD, participating in the synthesis ofk;, i.e.

M.r={n:|k.~ k)< D and|| is the Euclidean norms.(k —Ak) is the ™ datum

acquired at a relative shiftk, = k.- k, fromk, w{).(k) are reconstruction weights for the

synthesis of the un-acquired pokatof the I

receiver. The weighting coefficients are
calculated by performing a least-squares fit thtisBes the following equation:

5 k)€ () =h( 5.3]

uon, 5 I'=1

These weights can also be derived directlk-gpace by fitting the acquirdd
space data to auto-calibration signals (ACS) wicah be simply the densely sampled
space center available for many trajectories sgctadial and variable density spirals or
an external calibration scan (11). This is accosmgd by solving the equation

%S = Ew [5.4]
where % is a column vector of calibration signal valuesaied by thd™ coil, w is
the column vector of weights necessary to recoosthe pointk., and E is the encoding

matrix whose elements are defined by

[El (i) = 8(K —Lk) [5.5]
wherexeQ, Q being the ensemble of dtspace positions contoured by the calibration
region, i.e. the Fourier domain of tHecoil sensitivity map. Note that the sub-indexes

(n, I) emphasize that the matrix E has dimensions lepigthx (length ofl1p % L).
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5.2.2 Post-gridding k-space interpolation
Eq.[5.5] suggests that construction of the encodmafrix E amounts to re-

samplings(k), which may be efficiently implemented using griagli(11). This suggests

L
that the PARS operatod_ > w{}.(k,), which transforms non-Cartesian accelerated

I'=Lubn,p
data onto aliasing free full Cartesian data, candpeesented by a product of a mono-

channel gridding operatorz d.m» Which transforms a coil non-Cartesian accelerated
mirn, o

data onto aliased Cartesian data, and a multi-élamreighted average operator

L
> > w,.(k), which synthesizes a gridded datum by linearly siming gridded data

I'=1n0n, p-
from all coils. This can represented mathematidayly

[5.6]

YT Wk =Y T w00y a.

I'=1ud, p 1'=1n00, o mon, o
whereD’ andD” are the gridding and the weighted average intatfwol kernel widths,
respectively. Therefore, Eq. [5.2] can be rewritisn

L 5.7
sk)= S S wWi(k) §( k-4 K) [5-7]

uM o 1'=1
wherek. describes the Cartesian positions of the gridded, & (k —Ak.)is thel™ coil

gridded signal at a relative shiftk; = k. - ke from k.. The formulation in Eq. [5.7]
requires all coil data to be gridded onto Cartegiaid before the weighted average

interpolation.
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The implication of Eq.[5.7] is that a weighted aa@e interpolation can be applied
to remove aliasing from the gridded data while wecing the errors induced by applying
gridding on data that violate Nyquist condition.otBl that in Eq. [5.7], the interpolation
weights are still location dependent and calibratime reconstruction for eadtaspace
sample would be very time consuming. A segmentatgirategy for efficient

interpolation is therefore necessary.

(@) (b)

Figure 5.1 Analysis procedure of thergy distribution during gridding

(a) A unit signal located at a source pointd) is sinc interpolated onto the spiral grids
(indicated by the red arrows). Then the interpolatd signals are gridded onto several
target Cartesian grid points (x) including the souce point (indicated by the blue
arrows). Repeating this process for all Cartesiargrid points permit to generate

maps which describe these grid points contribute teach other. (b) For each gridded
point, a 5x5 neighborhood is examined.

5.2.3 Segmenting the griddedk-space data for efficient reconstruction

In a conventional gridding process, the non-Caatesiata are convolved with a
window such as the Kaiser-Bessel function windo®w).(5egmenting the data gridded
from an under-sampled non-Cartesian trajectoryefificient reconstruction requires a

detail analysis of the energy distribution durihg gridding process. A simulation study
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was conducted to capture the dependence of thdegtidspace data points from under-
sampled non-Cartesian data on original rectiliflegpace data. To this end, an impulse
located at a given Cartesian point (denoted ascequwint) was first sinc interpolated to
generate the non-Cartesian trajectory data andchtmeCartesian trajectory data, with
missing segments zero-filled, were gridded to tlaet€3ian grids (target points) using a
Kaiser-Bessel function window (e.g. Figure 5.1lagp®ating this process for every
Cartesian point mapped out their contributionsachegridded point. Assuming this to be
local, the contributions to each gridded point frantocal neighborhood of 5x5 (Figure
5.1b) were examined and are shown in Figure 5.22M\there is no under-sampling, the
contribution maps are uniform in the k-space (Sge%2a). When the spiral trajectory is
under-sampled (Fig. 5.2b and 5.2c), the contrilbut@aps exhibits a pattern similar to the
sampling trajectory, with the grid points closer @oquired segments receiving more
contribution. The cross-sectional profiles displhya the top of each figure indicate that
these contributions can be represented by stepgsgndag on the gridded point’s
distance from the sampled trajectory, with the nemdf steps equal to the reduction
factor R. Dividing each map by the central map leads tating contribution maps that
are virtually uniform (Figs. 5.3a and 5.3b), sudoesthat the grid points corresponding
to the same step in the profile can be deconvolvigd the same kernel. Similar results
were obtained with radial trajectory (Figure 5Mh)other words, if gridding is applied to
under-sampled spiral and radial trajectoriegacceleration factor) interpolation kernels
(DUG kernels) are sufficient to deconvolve the sdi griddedk-space data for proper

reconstruction.
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Figure 5.2 Absolute contribution maps foiraprajectory

Simulation results of the contribution maps for 4-egment spiral with matrix size 64 x 64
accelerated at rate: (a) 1, (b) 2, and (c) 4. Theaps are displayed in a configuration that
reflects the contributions to each gridded point fom a local neighborhood of 5 x 5. The
maps of (b) and (c) are weighted by the spiral tractory. On the top of these maps,
representative cross-section profiles of the mapseshown.
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Figure 5.3 Relative contribution maps fpiral trajectory

Relative contribution maps for (a) R = 2 and (b)R = 4 obtained by dividing each map of
Figure 5.2 ((b) and (c)) by its corresponding centemap, respectively.

Figure 5.4 Simulation results for radialjé&ctory
Simulation results for a radial trajectory with matrix size 64 X 64 accelerated at rate 4:
(a) absolute contribution map (b) relative contribtion map. The maps are displayed in a

configuration that reflects the contributions to eah gridded point from a local
neighborhood of 5 x 5.
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5.2.4 Determining the reconstruction weights

DUG weights are determined using a fraction ofdhta acquired without under-
sampling which can be done before, after, or duthregactual accelerated acquisition.
Two copies of this calibration data are made. Farhecoil, spiral segments or radial
projections in the first copy that would be normamitted in an accelerated experiment
are zero-filled, and the zero-filled data are sghsetly gridded onto Cartesian grid,
referred to as aliased grid, using Kaiser-Bessettfan. At the same time, the second
copy is also gridded to form the reference gridsTrocess is summarized in Figure 5.5.
The gridded datasets are then segmented accoalthg procedure described above. We
assume that each data point in the reference glittelpace for each coil can be
calculated by a simple weighted average (defined BYJG kernel) of the corresponding
point and its neighbors in the aliadedpace of all the coils as shown in Figure5.5. This
can be mathematically represented by

. L . . 5.8
Sk = D W § k). oo

T, o 121
The system of linear equations formed by consideBnq. [5.8] for all samples of each
group can be solved to determine the DUG reconsbrueveights of the group. The set
of optimized weighting coefficients of each growgpdbtained by applying the cross-
validation as described in (22) to determine thené&lesupport that balance between

artifacts and SNR.
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Fully sampled calibration data

Zero-filling

riddin
& Gridding gniading

x0

GRAPPA
Fitting
—

Aliased gridded k- space Reference gridded k-space

Figure 5.5 DUG weights calculation procedure

Both the fully sampled calibration data and its unar-sampled copy (with zero

filling) are gridded, clustered, and reordered to gnerate the reference and aliased
hybrid spaces, respectively. By fitting the data irthe aliased hybrid space (selected
by the kernel support) to the target data in the réerence hybrid space, the weights
can be determined.

5.3 Methods
5.3.1 k-space trajectory
Our proposed method was demonstrated on spiralradidl trajectories. The
spiral trajectory was a multi-interleaf Archimedigpiral (Figure 5.6a), described by the
following general equations (23):

ot j=1.J [5.9]
ki (t)=Ar7e! ™), {’ }

@ =2mjlJ
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weret = [0, 1] and a function of time and is determirsatording to the slew-rate and
amplitude constraints as described in (Ref. i0f 2tq with q equals the number of
windings ink-space per interleaf, is a constant determined by the desired matrig siz
and field of view f = M/(2x FOV, M: matrix size),a > 1 defines the amount of

oversampling near the origin of tkespace wanted.

(@) (b)

Figure 5.6 Non-Cartesian trajectories used

(a) 4-interleaved spiral and (b) radial trajectories accelerated at rateR = 4. The Filled
line represents k-space data points acquired, andagh lines represent k-space point
omitted. Ak,x denotes the maximum separation of the k-space pdsand isR times the
Nyquist required Ak.

The radial trajectory (Figure 5.6b) used in thigkws described by Eq. [12],

" { j=1..J } [5.10]
ki () =k, (H)e”,

@ =2m/J
(t)is a ramp function from —1 to 1, arkeh is a constant determined by the desired

matrix size and FOVkg = M/(2x FOV)). The number of radial viewd is given byJ

=ceil(2rM). The projections are azimuthally separated by @léfset, .
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5.3.2 Data acquisition

Spiral axial brain data and radial short axis vieavdiac data were acquired on
Siemens Tim Trio™ 3.0T system with a 12-channeldheail and on a 1.5T Siemens
Avanto with a 12-channel cardiac matrix, respedyivin both cases, fully sampled data
were acquired twice. The first measurement sergeshaexternal reference scan to derive
the DUG kernels. The second measurement was dowphsadnto simulate parallel
imaging with acceleration factors of 2 and 4 forrap 4 and 6 for radial, respectively.
The spiral trajectory was implemented in the IDEAIse programming environment
(Siemens Medical Solutions, Malvern, PA, USA) amhgisted of four-segment with
matrix size: 128 x128, FOV: 256 x 256 mmlice thickness: 5.0 mm. The spiral specific
acquisitions acquisition parameters were, TR/TED@B0 ms. Maximum slew rate and
gradient amplitude were 150 T/m/s and 23 mT/m, eetpely. The radial data were
acquired using True FISP sequence with: matrix $i28 x128; FOV = 280 x 280 nfm
TR/TE = 196.11/1.57 ms, flip angle 70°, slice tlieks = 5 mm, 208 radial views

acquired in 16 segments to meet the Nyquist coiteof t/2x readout points.

5.3.3 Image reconstruction

Gridding using the Kaiser-Bessel function windowsvwapplied to both reference
and undersampled data of the spiral and radiakdtgdollowed by the segmentation of
the gridded data as described above. Unless otberspecified, the gridding window
width of 6 was used. Next, cross-validation wasliadpto the reference dataset to

determine the optimal kernel support of circulaamh Next, each datum in the aliased
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griddedk-space of each coil was calculated by DUG intepaiaits neighbors in the
aliased griddedk-space of all coils. The final image was obtaingdsbom of square
combination of all coil images. On the other hasegmented GRAPPA reconstructions
(12,14) were performed on the cardiac and braia,daspectively, for comparison. 16
segments along the readout and azimuthal direcfmnsadial GRAPPA(12) and spiral
GRAPPA(14), respectively, were used as describetheir respective algorithms. All
algorithms were implemented in MATLAB (The Mathwerkc., Natick MA, USA) on a

Pentium 3.00 GHz computer with 2GB RAM.

5.4 Results

Figure 5.7 presents the reconstruction resulthefspiral brain data fdR = 2 (b)
and R = 4 (c). For each acceleration factor, tleenstructed images using direct spiral
GRAPPA and DUG are shown. The reconstructed imagedisplayed with the same
windowing for comparison. Below each image its #®odifference with the non-
accelerated image (a) is displayed, with a windettirgy that is much lower than that for
the reconstructed image. The optimal kernel supp¢of circular shape) used for
reconstruction were 89 R=2) and 11x 11 R=4) for DUG and 4 4 (R = 2) and 5x
5 (R = 4) for direct spiral GRAPPA. DUG reconstructishows a better performance
compared to spiral GRAPPA as indicated by the difiee images. A quantitative

comparison between these reconstructions is pravidéable 5.1.
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Under-sampled Reference Under-sampled

Direct
Spiral GRAPPA

DUG

Image Difference Image Difference

() (b)

Figure 5.7 Spiral reconstructed images
(a) 2-fold acceleration and (b) 4-fold acceleratianFor each stack images, the under-sampled
image is shown at the top row and the middle and bmm rows correspond to the direct
spiral GRAPPA and DUG reconstructed images, respeiely. To the right of each
reconstructed image, its absolute difference withhee non-accelerated image is shown.
Gridding window width was varied to investigate itsfluence on the DUG
reconstruction as illustrated in Figure 5.8 BE 4. In all cases, the optimal kernel was

used. It is obvious from visual inspection that theonstruction performance increases

with increasing gridding window width.
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(b)

(d)

Figure 5.8 Reconstruction quaditg gridding window

Influence of the gridding window width on the recorstruction
performance for 4-interleaved spiral accelerated atate 4. Widths of (a) 3,
(b) 4, (c) 5, and (d) 6 were used. Reconstructionuglity improves with
increasing gridding window width.

Figure 5.9 presents the radial cardiac data refuitR = 4 (b) andR = 6 (c). DUG
reconstruction is compared to radial GRAPPA. Thagaes are organized in the same
manner as in Figure 5.7. The two reconstructiomsvagually comparable and only a
guantitative comparison can be made as indicatedainle 5.2. The optimal kernel
support used were®83 (R=4) and &« 4 (R=6) for DUG and 33 (R=4) and & 3

(R = 6) for radial GRAPPA,;
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5.5 Discussion

We have shown that an efficient reconstruction @f-€artesian accelerated data
can be achieved by deconvolution of the gridéespace. While examples using spiral
and radial have been shown, DUG can be used tos&cat images from any trajectory
with regularly organized patterns. In DUG, a judrgi interpretation of the energy
distribution of the acquired signals during theddimg process is exploited in order to
considerably reduce the number kernels necessaaghieve high quality reconstructed
images, leading to faster reconstruction. The tgbdf DUG to reconstruct high quality
data with a number of kernels per coil equal thealpe imaging accelerator, only one
kernel more than that used in a normal CartesiadR3\, provides a significant gain
for non-Cartesian applications involving repetitmeasurements such as function MRI,

perfusion imaging, and diffusion tensor imaging.

The results of Figs. 5.7 and 5.9 and Table 5.1rigledemonstrate the superior
reconstruction performance of DUG as compared gonseited GRAPPA (12,14). DUG
applies a weighted average interpolation at thiestep of the two convolution processes
(gridding followed by DUG interpolation), as oppds& segmented GRAPPA, and
therefore better handles the error propagationndutine reconstruction because of the
ability of the DUG interpolation to blindly providthe best fit to the problem that is
present to it. Compared to segmented GRAPPA utdini sectors, the proposed method

is approximatelyr-1) times faster as indicated in Table 5.2.

133

www.manaraa.com



The simulation analysis provided in the “Theorytten provides strong support
to our segmentation strategy of the gridded datafftcient reconstruction. Although our
proposed algorithm is not as theoretical exactrasipusly demonstrated non-Cartesian
GRAPPA reconstruction schemes, it is far more igfficand reliable and can be used in

a number of applications.

Table 5-1Comparison between reconstruction meaarsrrors

Radial Spiral
R=4 R=6 R=2 R=4
Radial GRAPPA 182 366 - -
Direct spiral GRAPPA - - 656 3840
DUG 165 321 456 1466

The demonstration of our method was performed waitlfull reference data
acquired during the first measurement which cowedp to the acquisition scenario in
many applications such as functional MRI, diffusitensor imaging, and perfusion
imaging. However, the reconstruction using weigldggved solely from the low-space
resolution of the reference data showed companadtormance to that using the full
reference data (results not shown). This suggkatghe new method can also be used in

applications requiring internal calibrations.
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Under-sampled Reference Under-sampled

Radial GRAPPA

DUG

Image Difference Image Difference

() (b)

Figure 5.9 Radial reconstructed images

(a) 2-fold acceleration and (b) 4-fold acceleratianFor each stack images, the under-sampled
image is shown at the top row and the middle and bmm rows correspond to the direct
radial GRAPPA and the new efficient GRAPPA reconstucted images, respectively. To the
right of each reconstructed image, its absolute diérence with the non-accelerated image is
shown.

Distances between acquired non-Cartegi@pace data points increase with the
parallel imaging acceleration factor. It is therefoemportant that the chosen gridding
window width be large enough to avoid gridded daaants with zero value as indicated

by the results of Figure 5.8.
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To avoid gridding errors that may occur when thengad data violate the
Nyquist criterion, the recently introduced pseud®ARPPA (18) algorithm utilizes a
special gridding algorithm in which, instead of equling each non-Cartesian datum on
neighbor Cartesian grids as done in conventionaVaition gridding algorithms, each
datum is shifted to the nearest Cartesian gridimgaloles in thé&-space. Then different
patterns in the Cartesian grid are identified forrmal GRAPPA interpolation. However,
while the method can be applied to any arbitrany-@artesian trajectory, it may require
a considerably high number of GRAPPA kernels (as kgrnel per pattern is required)
leading to potentially long acquisition time. Ouroposed method can utilize any
conventional gridding algorithm and provide considide computational advantage while
ensuring high quality images for non-Cartesianettgries composed of regularly

organized patterns.

Table 5-2 Comparison between computation timesipgrimage (in sec)

The total calculation time of the gridding table and GRAPPA weights are not included since they
were virtually identical for the three methods.

Radial Spiral
R=4 R=6 R=2 R=4
) 145 158 - -
Radial GRAPPA
. ) - - 131 143
Direct spiral GRAPPA
10 11 8 10

DUG

The total calculation for determining the gridditadple and DUG weights took less

than 2 min for all the data examined in this stu@nce the DUG weights and the
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gridding table were determined, subsequent imagaognstruction including gridding
took approximately 10 sec per image (as shown ipl€ra.2), making online imaging

reconstruction possible for non-Cartesian paraiheging with large volume datasets.

5.6 Conclusions
A new parallel imaging reconstruction method fon+@artesian parallel imaging
is introduced and demonstrated ionvivo data. Compared to existing methods, DUG
works on data gridded using conventional griddilggpathm and is faster and provides a
significant gain for non-Cartesian applicationst trejuire repetitive measurements such
as functional MRI and diffusion tensor imaging. Tgreposed method introduces further
improvements in computation times and reconstracétficiency for parallel imaging

using non-Cartesian trajectories.
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CHAPTER 6. SINGLE-SHOT MULTI-ECHO PARALLEL EPI FOR DTI

WITH IMPROVED SNR AND REDUCED DISTORTION 2

In this chapter, a multi-echo parallel echo planaging (EPI) acquisition strategy
is introduced as a way to improve the acquisitiffitiency in parallel diffusion tensor
imaging (DTI). With the use of an appropriate eclembination strategy, the sequence
can provide a signal-to-noise ratio (SNR) enhanceméile maintaining the advantages
of parallel EPI. Simulations anth vivo experiments demonstrate that a weighted
summation of multi-echo images provides a significgain in SNR over the first echo
image. It is experimentally demonstrated that 8fR gain can be utilized to reduce the
number of measurements often required to ensurguatke SNR for accurate DTI
measures. Furthermore, the multiple echoes carséeé 1o derive a ;Tmap, providing

additional information that might be useful in soapplications.

6.1 Introduction
Diffusion tensor imaging (DTI (1)) permits noninwaes characterization of water
self-motion in tissue and thereby provides infoipratregarding the architecture and

microstructure of a tissue. DTI has been provebet@n invaluable tool for the diagnosis

8 The work in this chapter has been adapted foripafibn as “Nana R, Zhao T, Hu %ingle-shot Multi-
echo Parallel EPI for DTI with Improved SNR and Regl Distortion Magn Reson Med. (In Production)
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of pathologies that modify tissue integrity (2). a&cterization of water diffusion
requires a set of diffusion-weighted (DW) image} €équired with diffusion gradients
applied in at least six non-collinear directiongjspan image with negligible diffusion
weighting 00 image). The greatest technical difficulty in aicoqng DW images is to
overcome the effects of macroscopic tissue motwhjle retaining sensitivity to
microscopic water motion. Owing to its insensigvMid motion, single-shot EPI (4) is the
most widely used sequence for diffusion-weightechgimg (DWI). However, limited
spatial resolution, sensitivity to field inhomogégeand low signal-to-noise ratio (SNR)

are well-recognized limitations of EPI (5).

Multi-shot EPI has been used to circumvent the tsbarings of single-shot EPI
(6). Multi-shot EPI reduces the off-resonance iretlidistortions proportionally to the
number of interleaves and leads to an SNR impronei@e compared to single-shot EPI.
However, ghosting artifacts due to variations betwshots limit its use in DWI. Due to
the complexity of brain motion and DTI’s high sensiy to motion, navigator correction
(7) does not always lead to ghosting free imagesddition, DWI using multi-shot EPI
has a relatively low temporal resolution and thigug, limiting its use for clinical

applications.

Parallel imaging (8,9) has been demonstrated tagaté the shortcomings of
single-shot EPI effectively in general (10), as Iwad for DTI (11). Parallel imaging
exploits the sensitivity variations of coils in ailcarray to reduce the number of encoding

steps necessary for gradient-based spatial enco@ombining parallel imaging with
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EPI provides the advantages of a multi-shot EPhout the need of multi-shot but
potentially compromises the SNR due to shortenextioet and g-factor (8). Any
compromise in SNR is detrimental for DTI since SNRften limited in DTI. Therefore,

it is highly desirable to improve the SNR in paghtiffusion-weighted EPI.

Multiple spin-echo or gradient-echo non-EPI acdigsi strategies have been
previously applied to improve the SNR (12,13) inIDRese are, however, limited to ex-
vivo studies due to the sensitivity to motion ofmrBPI acquisition schemes. Parallel
imaging reduces the EPI acquisition window, petingttthe acquisition of multiple
images with multiple echoes after a single exatatin addition to the expected gains of
reduced distortion artifacts and increased spatisblution, the multi-echo approach is
expected to improve SNR, increasing data acqumsiificiency, and provide a;Tmap.
The present work investigates the benefits of aoctggimulti-echo images using single-
shot parallel EPI for DTI. For the combination ofillnecho images, weighted averaging
in which the weights for each image are determipmigdl-wise as the relative attenuation
of its intensity to that of the first echo imageuised. The improvement in SNR of this
approach is characterized both by simulation angeements. Its practical utility is
demonstrated by fractional anisotropy (FA) mapstharmore, high-quality Z7maps are

also derived.

143

www.manaraa.com



6.2 Methods

6.2.1 Data Acquisition and Processing

180

Echo #:

Figure 6.1 Single-shot Multi-echo paraDall sequence block diagram

In a standard diffusion-weighted imaging based on gised gradient spin echo (contoured
with dash lines), a dual spin-echo with matched gidient pulses is used to provide the
desired diffusion weighting while minimizing eddy arrent distortion (14). EPI readout
produces a diffusion-weighted image with each exeition; nevertheless, only a single
diffusion weighted image is acquired. We propose irgy multiple spin-echoes to acquire
multiple EPI images with different echo times but vith same diffusion weighting.
Specifically, after the first diffusion-weighted ER image is collected, another 180 RF
pulse is added and a second EPI image, with the sandiffusion weighting, is collected
(contoured with filled lines). Additional echoes ae collected by addition of 180 RF pulse.
However, the long TE dictated by the length of theacquisition window limits the SNR in
the second image. The combination of this approachith parallel imaging allows shorter
acquisition windows, thereby shortening the TE. Wik this acquisition strategy, the echo
images can be appropriately combined to improve th&&NR and therefore reduce the
number of measurements often used to improve the $N

Starting from a standard diffusion-weighted EPIwsge (14), a multi-echo
pulse sequence was constructed by the additionefafcusing RF pulses and EPI
acquisition of the resultant spin-echoes (Figurt).5Phase encoding gradients are
rewound after each echo so that khgpace trajectories are identical for all echodwe T

sequence was implemented using the Siemens progngn@mvironment IDEA™,
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All in vivo data were collected with participants’ written sent in accordance
with our institutional review board policy. The etpnents were performed on a 3T
Siemens Tim™ whole-body MR scanner (Siemens MedBwlutions, Malvern, PA)
using a 12-channel head coil for reception andotbay coil for transmission. Data were
acquired on six healthy subjects (average age ©#28vith an imaging resolution of 2
2 mnf, a matrix size of 128 128, and a slice thickness of 2 mm. Imaging prai®with
an acceleration factoRJ of 2, 3, and 4, respectively, were used. TheoWithg imaging
parameters were used: 5 echoes with minimum pessbho spacing, TR = 3 s,
bandwidth = 1954 Hz/pixel, FOV = 256 mm, 10 axiites, b = 1000 s/mrfy and 12
diffusion weighting directions (plus = 0). The echo parameters used for each imaging
protocol are given in Table 6.1. GRAPPA (9) wasduder image reconstruction.
Additionally, standard spin echo (SE) images witle £choes were acquired on the same
slices and at the same resolution for generatingndps for comparison. The SE echo

times corresponded to 30, 60, 90, 120, and 150 ms.

Echo combination was performed offine. FA maps evegenerated after
distortion correction with FSL (FMRIB, Oxford, UKyhich computes the apparent
diffusion coefficient for each diffusion directiarsing only images acquired lat= 0 and
at the desiret value. T maps were calculated by mono-exponential fittihthe multi-
echo b0 images or SE images. All custom computer prograrage implemented in

Matlab (The MathWorks, Inc., Natick, MA, USA).
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Table 6-1 Echo times (ms) used for different agegien factors

R TE(1) TE(2) TE(3) TE(4) TE(5)
2 96 141 186 231 276
3 85 117 149 181 213
4 80 104 128 156 184

6.2.2 Echo Combination Strategies and relative SNR Analys

When multiple echo images are acquired where sigimain successive images
are coherent and the noises are incoherent, seseatbgies can be used to obtain a
composite image. For the single-shot multi-echoalpelr DTI acquisition, the signal
strengths of later echoes are significantly atteedias compared to the one of the first
echo due to 7 decay. In this case, weighted averaged combinaifoachoes would
achieve higher gain in SNR than simple averageisatiterefore considered in this study.
For simulating the SNR gain, a theoretical modeahefratio of the SNR of the combined

echo to the first echo is derived as follows.

The measured signal in any pixél, can be represented as
% =X+, [6.1]
wherex is its true signali represents the echo numbérjs the noise in echo image
assumed to have mean zenp,is the attenuation factor of the signal intensityechoi
with respect to that of the first echo £ 1), implying thatw; = 1. If N echoes are
acquired, the weighted average of the measuredalsigvith weights given by the

attenuation factors, is given by
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~_1N iN
y—NZ(w)“NZfivv, [6.2]

Let the SNR be the ratio of the mean value to thrdard deviation of the noise,

the ratio of the SNR of the combined echo to thahe first echo is given by

SNR &
SNR,. ;(\Ni) : [6.3]

In implementing the weighted averaging, a pixelemisono-exponential decay of
the signal intensity between echoes was assumed anmthp was first calculated. The

pixel weight was then derived according to

__ATE
wW(xy)= e 0.

[6.4]

whereATE; is the echo spacing between eclamd echo 1x andy are pixel coordinates.

The weights were determined b images and used for all DW images.

SNR was measured in 18 different ROIs (per subjeatgorized as major white
matter (WM) tracts, deep gray matter (GM) regiocmtical WM (refers to peripheral
WM within the gyri), and cortical GM. These regionsre identified based on FA maps
and cross-referenced wib® images to avoid inclusion of CSF-filled spaceslescribed
by others (15). Deep GM regions comprised of hitdtsections of the globus pallidus
(GP), thalamus, and putamen. Deep WM ROiIs inclutiedgenu and splenium of the

corpus callosum, the anterior limb of the intercebsule (AIC), the posterior limb of the
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internal capsule (PIC), and the external capsulgé).(Eive regions of cortical WM,

consisting of the superior frontal gyrus (SFG), raumarginal gyrus (SMG), superior
temporal gyrus (STG), middle occipital gyrus (MO@hd postcentral gyrus (PG), were
considered. The cortical GM ROls resided in graytenaf SFG, SMG, STG, MOG, and
PG. The SNR was determined according to a prewadess$cribed procedure (16,17) to
account for the number of receivers and the noistiltition in magnitude images
obtained by sum-of-squares images. The ratio oStiR of the combined image to that

of the first echo image was computed for each ROI.

6.3 Results
It is evident from visual inspection that the tdifons present in diffusion-
weighted images acquired using a conventional [@fusnce without acceleration in the
acquisition (Figure 6.1a) are significantly redueedhe ones obtained using the single-
shot multi-echo parallel DTI sequence with an am@glon factor of 4 (the first echo is
shown) (Figure 6.2). This improvement is in goodeagnent with previous observations

that parallel imaging reduces distortion artifaot&PI1-DTI (10,11).

The simulated (according to equation [3]) ratiostlvé SNR of the combined
image to that of the first echo for cerebro-spifiald (CSF), gray matter (GM), and
white matter (WM) with assumed, Values of 2200 ms, 100 ms, and 80 ms, respectively
are shown in Figure 6.3a. In generating the platgonstant echo spacing of 24 ms

(which corresponds to the experimental value use® £ 4, see Table 6.1) was assumed
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and the respective weights (attenuation factorgevaetermined using Eq. [1.4]. The
CSF shows nearly no attenuation and its relativ® Shintribution is approximately the

square root of the number of combined echoes. &la¢give SNR of the combined image
tapers off after 5 echoes for both GM and WM, v8IHR gain plateaus at 54% and 45%,

respectively.

Slice 1

Slice 2

Figure 6.2 Evidence of geometric distortreduction

Diffusion-weighted Images acquired using (a) a stalard diffusion sequence without
parallel imaging with TE = 132 ms and (b) single-sbt multi-echo parallel DTI sequence
with acceleration factor of 4 (only the first echoimage acquired at TE = 80 ms is
shown). In both cases, b = 1000 s/nfiriThe distortion artifacts present in the images of
column (a) are significantly reduced in those of damn (b).

The results of the experimental relative SNR am@wshin Figure 6.3b for three
imaging protocols corresponding to an acceleratamtor of 2, 3, and 4, respectively.
Each plot reflects the average of the relative 3dRss the ROIs and the subjects. These

results indicate that the gain in relative SNR tadf after about 2, 3, and 4 echoesRor
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= 2,R =3, andR = 4, respectively. At the plateau, the relativeRS@ain was (15 + 2)%

forR=2, (25 £ 3)% folR = 3, and (36 + 5)% fdR = 4.
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Figure 6.3 Simulated and experimental SNR gain

(a) Numerically derived ratio of the SNR of the ech combination to that of the first echo alone
plotted as a function of the number of echoes comied, assuming a constant echo spacing of
24 ms and a T2 of 2200 ms, 100 ms, and 80 ms forat®o-spinal fluid (CSF), gray matter
(GM), and white matter (WM), respectively. (b) Expeimental plots of the relative SNR change
between the echo combination and the first echo asfunction of the number of echoes for
three different parallel imaging protocols correspmding to R = 2, R = 3, and R = 4,
respectively. Each plot reflects the average of theelative SNR across the ROIs and the

subjects

Figure 6.4 presents FA maps of three slices (dygplan three different rows)
generated (a) from a single-shot single-echo aitopris without averaging
(corresponding to a scan time of 57 s), (b) a shsyjiot single-echo acquisition with two
averages (corresponding to an acquisition time aifid 36 s), and (c) a single-shot 4-
echo acquisition without averaging (correspondm@ scan time of 57 s). While the FA
maps generated from the first echo without aveagrhibit significant noise level

(Figure 6.4a), the noise level in the FA maps gateer from the 4 echo combination is
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significantly reduced (Figure 6.4c), on par witlatthn the FA maps generated with 2
averages (Figure 6.4b). Table 6.2 lists the meawv&des in the ROIs used for the SNR
analysis. Note that for the cortical WM and cotti€aM, respectively, values of
individual ROIs were pooled together because theyewery similar. The combination
of 4 echoes led to FA values that are higher tlesd obtained with echo 1 without

averaging and in good agreement with those obtaiittdecho 1 with 2 averages.

Slice 1

Slice 2

Slice 3

Figure 6.4 lllustration of acquisitioffieiency improvement

Comparison between FA maps generated from multi-echDTI datasets (R = 4) of 3
slices of a healthy subject from: (a) first echo whout averaging; (b) first echo with
2 averages; (¢) combination of four echoes of a gjie excitation without averaging.
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Slice 1

Slice 2

Figure 6.5 Comparison betweenniaps

b0 images (column a) and corresponding T2 maps (Gohn b) generated from 4 echoes of a
single excitation multi-echo DTI dataset (R = 4). 5images obtained on the same slices and
corresponding T2 maps are shown in columns ¢ and dgspectively.

To-weighted images (a) and the correspondingnéps (b) of two slices generated
from 4 echoes of aR = 4 multi-echo dataset are shown in Figure 6.5.démparison,
images of the same slices obtained using a stanoaidti-echo SE sequence and
corresponding Fmaps are shown in panels (c) and (d), respectiviedple 6.3 lists the
T, values of selected ROIs compared to those obtaised) the standard multi-echo SE

sequence.
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6.4 Discussion

6.4.1 Echo combination and SNR

The numerical calculations allowed us to invesggatheoretically the
performance of combined image using multi-echo ldr&P1, assuming representative
T, values and practical echo spacing. The latter Ipa@iepends on the acquired matrix
size and the bandwidth per pixel. The numericalltesndicate that combining multiple
echoes could result in SNR improvement and thasidenably larger gains are expected
in regions of longer I or for acquisitions with short echo spacing. Th@ezimental
SNR ratio between the combined image and the dcbb image (Figure 6.2b) largely
follow the numerical prediction (Figure 6.3a). Hoxeg the height and the location of the
SNR plateaus are slightly different from thoselw simulations. Note that at R = 4, the
experimental echo-spacind\TE = 24 ms) corresponds to that used for simulation
These discrepancies are likely due to errors ierdehing the attenuation factors/)
and the imperfection of the refocusing RF pulseser@l, the experimental results
support the prediction that echo combination ldads SNR gain or at least maintains the

SNR for all the number of echo combinations exawuhinethis study.
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Figure 6.6 Comparison between SOS and waigaverage echo combination

The figure compares the SNR in the combined imagdsr different acceleration factors: (a)
R =2, (b) R =4, and (c) R = 4. Weighted averagerforms better than SOS even for the b0
images. It is expected that for the diffusion-weigted images, which have inherently low

SNR, this difference would be bigger.

Sum of squares (SOS) is widely used to combine @mdgpom array coils and
provides a near optimal combination when the SNIRgh but is less than optimal at low
SNR (18, 19). Because multi-echo DTI images havwe 30NR, weighted average instead
of SOS is recommended for the singles-hot multegaarallel DTI images. This choice
is supported by our comparison (Figure 6.6) of tive methods when applied to our

experimental data, which showed that weighted @yeepeerforms better.

In a previous paper, Matiellet al. (20) reported that the contributions of EPI
readout and phase-encoding gradients to the bxmatriDTI-EPI sequence were

negligible. We have performed a similar analysikirtg into account the crusher and
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slice selection gradients associated with refoguBR pulses for additional echoes. With
the imaging parameters used in this work, the iffee in b-values between adjacent
echoes ranges from 0.19 to 0.27 sfmrhis difference is negligible, even when
multiplied by 4 for the 8 echo, compared to the nominal b-value of 1000 &inffor
pixels containing multiple compartments with diffat T,s, compartment-dependens T
decay between the echoes may complicate the cotidnnaf the echoes. This was not
found to be a significant factor as there is noisteally significant difference between
the FA values of the echo combination and the &céto with approximately similar SNR

(see Table 6.2).

6.4.2 Acquisition efficiency

The fact that the SNR tapers off after the comlbomabf two echoes for the
acceleration factor of 2 and more echoes at higbauction factors is understandable
because the shorter echo spacing at high&liows the inclusion of more echoes before
the signal drops out due to, Becay. The 36% SNR increase in the combined image
relative to the first echo image Bt= 4 is close to the increase of 41% that would be
expected from two averages of the first echo; ¢lais in SNR can be used to reduce the
number of measurements and thereby leading to eedscan time. This point is
supported by the FA maps shown in Figure 6.4. TAentaps obtained from the first
echo without averaging exhibits a significant ndeseel whereas the noise level of the
FA maps generated from the weighted average ohde=cwith the same acquisition time
is significantly reduced, to a level comparablghat in the FA maps generated from 2

averages of the first echo. These noise level rdiffiees led to a significant difference in
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the FA values reported in Table 6.2. The first eefithout averaging resulted in a

decrease in anisotropy as its signal is close ¢onthise level (21). On the other hand,

averaging the first echo with two averages or comnlgi 4 echoes led to a better estimate

of the anisotropy.

Table 6-2 Comparison between calculated FA valtisglected ROIs

The comparison is performed between the FA values derived from the first echo and those
derived from the combined echo images, computed and represented in Figure 6.4.

FA values
Region 1* echoimage 1%echoimage Weighted average
without with 2 combination of 4
averaging averages echoes
Combined cortical white matter 0.38 £ 0.05 0.46.640 0.43+0.03
Combined cortical gray matter 0.17 £ 0.06 0.21@20. 0.20+£0.05
Major white matter
Genu of Corpus callosum 0.60 £0.04 0.65080. 0.66 £0.04
Splenium of Corpus callosum 0.64 + 0.07 71003 0.68 £0.03
Anterior limb-internal capsule 0.55+£0.05 6@+ 0.03 0.62 £0.05
Posterior limb-internal capsule 0.56 + 0.06 .620+ 0.04 0.61+£0.04
External capsule 0.40 £ 0.05 0.47 £ 0.02 @403
Deep gray matter
Thalamus 0.33+0.05 0.37£0.03 0.35+0.03
Putamen 0.18 +£0.03 0.21+£0.03 0.23+0.03
Globus pallidus 0.26 = 0.06 0.31+£0.02 t3B04

The multi-echo approach provides more gain at p@fallel imaging acceleration

factors. In the past, an acceleration factor f @ften used for parallel imaging to avoid

image degradation at high accelerations. With tralability of array coils with a large

number of channels, it is now common to use higleeeleration factors, such as 3, 4,

and even higher (22, 23). In fact, with the 12-ctedrcommercial array coil used in this

study, images obtained using an acceleration faftérare of good quality.

While the multi-echo approach can enhance SNR peitagion, it could

compromise the efficiency in multi-slice acquisitso Specifically, with a given number
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of slices, the minimum TR may be lengthened. Inliapfpons where a large number
slices are acquired, a good approach may be taracglechoes, achieving most of the

SNR gain while avoiding significantly increasingthR.

6.4.3 Additional T ; map information

The quality of the T maps derived using the single-shot multi-echo I r&PI
data (Figure 6.5b) is as good as the ones obtaisied the standard multi-echo SE data
(Figure 6.5d). Furthermore, as is illustrated inbl€a6.3, no statistical significant
differences between the correspondingvdlues probed from selected ROIs were found,
consistent with the results reported in the litemat(24,25). This demonstrates the
potential of the single-shot multi-echo paralleffusion weighted EPI sequence for

providing additional information that might be useh some applications.

Table 6-3 Comparison between calculateddlues of selected ROIs

The comparison is performed between the T, values derived from the bO echo images of the
single-shot multi-echo DTI and those derived from a multi-echo standard spin echo sequences.

T» Values, msec

Region Single-shot multi- Standard SE
echo parallel EPI
Cortical gray matter 70.42 +5.89 73.01+4.53
White matter 54.71 +4.22 55.23 + 3.64
Caudate Nucleus 61.95+11.73 63.37 £9.15
Putamen 56.16 +9.12 57.65 + 9.63
CSF 843 £ 206 871 £ 225
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6.5 Conclusions
We have implemented and demonstrated a single-shaiti-echo parallel
diffusion-weighted EPI sequence in improving theRSMhile retaining the advantages of
reduced distortion. The SNR gain can be used taceedhe number of measurements
needed or improve the image resolution. Furthermibrese additional echoes can be
used to calculate the; Tap, providing complementary information that migk useful

in some applications.
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CHAPTER 7. CONCLUSIONS

Parallel imaging is now an established techniqueatwelerating imaging speed
beyond conventional MRI limits. This increase iresg has far-reaching consequences
with respect to increasing the accuracy of clingialgnostic accuracy, reducing the cost
of research and medical examinations, and impropatgent comfort. Ongoing research
continues to address various issues that hindee s@pects of parallel MRI applications.
In this dissertation work, five specific challengesoptimal and efficient parallel image
reconstruction have been explored with practicéliteans to ease routine clinical and

research applications presented in Chapters 2-6.

Chapters 2 and 3 explored methods for charactgraivd minimizing errors ik-
space based parallel imaging. Chapter 2 presentegtlaod based on cross-validation for
selecting the reconstruction kernel support thatllte in an optimal compromise between
accuracy and stability, i.e. best balancing theldodf between artifacts and SNR.
Because the method is simple and applied in pastgssing, it can be used routinely

with many existing reconstruction algorithms.

To further facilitate reconstruction optimizationdacharacterization, Chapter 3
introduced a simple and robust metric that expltits shift invariance property of the
reconstruction kernel to provide a goodness measfukespace interpolation for parallel

imaging. This in turn has enabled optimization gou@ntitative comparisons of several

162

www.manaraa.com



parallel MRI reconstruction techniques. The meaxtends to applications where the

cross-validation based optimization finds limitaiso

Chapters 4 and 5 discussed strategies for improafiggency of parallel image
reconstruction in applications involving large dats. In Chapter 4, a strategy was
introduced that uses the metric describes in Chaptdo improve reconstruction
efficiency and accuracy in free breathing non-gatBechamic parallel imaging by
exploiting the cyclic nature of the respiration uieed chest movement. This strategy can
be coupled with existing algorithms to facilitateeaktime on-the-fly image

reconstruction.

In Chapter 5, a method based on GRAPPA recongtruatias introduced to
improve computation time and reconstruction efficig for parallel imaging using non-
Cartesian trajectories. In many cases, the metiddd a relatively small computational
time per unit image as compared to conventional BRA, making online parallel image

reconstruction for non-Cartesian applications ima large datasets now possible.

Finally, Chapter 6 presented a pulse sequencetimabines parallel imaging and
multi-echo strategy to improve SNR in DTI. This SRin can be utilized to improve
acquisition efficiency. Additionally, the multipkecho-images can be used to generate a

To-map, complementing information that can be usefgbme applications.
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In summary, methods developed in this thesis wdkess challenges in parallel
image reconstruction. This dissertation representsignificant contribution to the
improvement of existing state-of-art reconstructmethods and will provide useful tools

and insights for future developments in parallehgimg.
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