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SUMMARY 

 

 

 

Imaging speed is an important issue in magnetic resonance imaging (MRI), as 

subject motion during image acquisition is liable to produce artifacts in the image. Many 

of the new applications of MRI require much faster acquisition. However, the speed at 

which data can be collected in conventional MRI is fundamentally limited by physical 

and physiological constraints. Parallel MRI is a technique that utilizes multiple receiver 

coils to increase the imaging speed beyond previous limits by reducing the amount of 

acquired data without degrading the image quality. 

In order to remove the image aliasing due to k-space undersampling, parallel MRI 

reconstructions invert the encoding matrix that describes the net effect of the magnetic 

field gradient encoding and the coil sensitivity profiles. The accuracy, stability, and 

efficiency of a matrix inversion strategy largely dictate the quality of the reconstructed 

image. This thesis addresses five specific issues pertaining to this linear inverse problem 

with practical solutions to improve clinical and research applications. 

First, for reconstruction algorithms adopting a k-space interpolation approach to 

the linear inverse problem, two methods are introduced that automatically select the 

optimal k-space subset samples participating in the synthesis of a missing datum, 

guaranteeing an optimal compromise between accuracy and stability, i.e. the best balance 

between artifacts and signal-to-noise ratio (SNR). While the former is based on cross-

validation re-sampling technique, the second utilizes a newly introduced data consistency 
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error (DCE) metric that exploits the shift invariance property of the reconstruction kernel 

to provide a goodness measure of k-space interpolation in parallel MRI. Additionally, the 

utility of DCE as a metric for characterizing and comparing reconstruction methods is 

demonstrated. Second, a DCE-based strategy is introduced to improve reconstruction 

efficiency in real time parallel dynamic MRI. Third, an efficient and reliable 

reconstruction method that operates on gridded k-space for parallel MRI using non-

Cartesian trajectories is introduced with a significant computational gain for applications 

involving repetitive measurements. Finally, a pulse sequence that combines parallel MRI 

and multi-echo strategy is introduced for improving SNR and reducing the geometric 

distortion in diffusion tensor imaging. In addition, the sequence inherently provides a T2 

map, complementing information that can be useful for some applications. 
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CHAPTER 1. INTRODUCTION 

 

 

 

1.1 General Introduction 

Since the pioneering work by Lauterbur in the 1970s, magnetic resonance imaging 

(MRI) has revolutionized the field of medical imaging (1). Several factors contribute to 

the continuing widespread clinical and research use of MRI; it can provide good contrast 

between soft tissue types; it can produce high-resolution 3D images with high signal-to-

noise ratio (SNR), and it does not employ ionizing radiation. The major drawback of MRI 

is imaging speed, as subject motion during image acquisition is liable to produce artifacts 

in the images. Many of the new applications of MRI require much faster imaging. 

Unfortunately, physiological safety guidelines limit the speed of conventional MRI. 

Parallel MRI is a recently introduced technique that relies on radiofrequency (RF) coil 

arrays to achieve acquisition speed not possible with conventional MRI (2-9). 

 

The goal in MRI is to image the spatial distribution of atom nuclei (generally water 

hydrogen protons) in a subject. Conventional MRI makes use of spatial linearly varying 

magnetic fields (magnetic field gradients) to encode the localized nuclear magnetic 

resonance (NMR (10,11)) signal in order to produce an image. This gradient encoding 

process requires a sequential switching of the magnetic field gradients a greater number 

of times than the number of uniquely-identifiable spatial information of the object along 
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the phase encoding1 direction (1,12). This sequential requirement imposes a significant 

time penalty since the time that separates two gradient encoding steps may range in the 

order of hundred microseconds or milliseconds. The traditional method for reducing MRI 

acquisition time has been to use faster gradient hardware. Unfortunately, safety measures 

regarding magnetic field switching rates and RF power deposition limit the speed 

achievable in conventional MRI. 

 

The spatial variations in the sensitivities of an array of receiver coils can emulate 

the effect of gradient encoding on the NMR signal (2). Therefore, if conventional MRI 

acquisition were performed with an array of RF coils, there would be some redundancy in 

the spatial encoding of the NMR signal. To image an object, parallel MRI exploits this 

redundancy with RF coil arrays to reduce the number of times the magnetic field gradient 

is required to be switched on and off.  In other words, some of the magnetic gradient 

encoding steps can be omitted during acquisition (i.e. the data can be undersampled 

below Nyquist requirement) without Nyquist-aliasing artifacts in the reconstructed image, 

consequently accelerating the image acquisition. Thus, parallel MRI offers faster imaging 

than conventional MR imaging of the same object at the same resolution.  

 

By markedly increasing the acquisition speed, parallel MRI improves image 

quality, reduces examination time, improves patient comfort, and permits the imaging of 

                                                 
 
1 Phase encoding is the process by which spins are spatially encoded based on their phase evolution over 
time. This is generally performed in a direction orthogonal to the direction of the signal readout. (see 
section 1.3.2.2.1)  
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moving structures. Currently, parallel MRI is a widely used commercial product with 

significant impacts on almost every practical aspect of MRI (13). 

 

1.2 Statement of the thesis 

The quality of a parallel-acquired MR image is in large dictated by the performance 

of the image reconstruction method. Although parallel MRI is an established technique 

and available in virtually all latest generation of MRI scanners, various challenges in 

image reconstruction still impede many aspects of its routine use. This thesis addresses 

five important aspects of parallel MRI reconstruction with practical solutions to ease 

routine clinical and research applications. 

 

1.2.1 Accuracy and stability 

In order to remove the image aliasing due to k-space2 undersampling, parallel 

MRI reconstruction must invert the encoding matrix that describes the net effect of 

magnetic field gradient encoding and coil sensitivity encoding. In general, two main 

strategies are currently used for this inversion process: direct and indirect inversion. Most 

direct inversion-based reconstruction methods formulate the linear inverse problem in 

image space and an explicit determination of the encoding matrix is required. While it 

may be numerically unstable and computationally intensive to calculate the matrix 

inverse, the direct inversion approach has the appeal of a theoretically exact solution. 

Additionally, a variety of conditioning and regularization techniques have proven useful 

to mitigate instability of the direct inversion-based reconstruction (14).  

                                                 
 
2 k-space represents the domain in which the signal is acquired and corresponds to the Fourier transform of 
the image space. (see section 1.3.2.2.1) 
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The indirect inversion approach operates in k-space and an explicit determination 

of the encoding matrix is not needed. Rather, each missing datum is interpolated from 

only a few local acquired samples from all coil channels. Reconstruction algorithms 

utilizing this approach are generally referred to as k-space based reconstructions. 

Implementation of the indirect inversion approach presents several advantages including 

numerical stability and computational efficiency, but makes the solution to the inverse 

problem inexact. Performance of reconstruction strongly depends on the selection of the 

local acquired k-space samples, or reconstruction kernel. For example, small kernels may 

be inadequate in capturing the complexity of the k-space interpolation while large kernels 

tend to be overly sensitive to errors in the data (15-17). The optimal kernel, which has 

been shown to depend on coil array configuration, noise level in the acquired data, 

imaging configuration, and calibration data, must provide a suitable compromise between 

these limits. In general, there has been an insufficient understanding of how to 

automatically control the errors in the indirect inversion reconstruction.  

 

In Chapter 2, the different types and sources of errors involve in indirect inversion 

based parallel MRI reconstruction are discussed. It is shown that for a given 

undersampled dataset, only the kernel support can be varied to influence the total error. A 

method based on cross-validation (CV) is proposed which automatically select the 

optimal kernel support that best balances the conflicting demands of fit accuracy and 

stability (i.e. between artifacts and SNR) in the reconstruction. In this method, the kernel 

selection is posed as a model selection problem and cross-validation is used for selecting 
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a regression model among a group of candidate models. Specifically, the method is 

demonstrated with the generalized auto-calibrating partially parallel acquisition 

(GRAPPA (8)). The effectiveness of CV-selected kernel support in image reconstruction 

is evaluated with simulated and experimental data, and compared with standard GRAPPA 

reconstruction. 

 

Along the same line, Chapter 3 introduces a simple and robust data consistency 

error (DCE) function for selecting the optimal kernel settings (e.g. kernel support size, 

kernel support configuration, calibration dataset) among a set of settings that influence 

the performance of parallel MRI reconstruction in k-space. As an alternative to cross-

validation (introduced in Chapter 2), which relies only on the low k-space information, 

DCE integrates information at all acquired resolutions and is therefore more robust and 

balanced. Additionally, DCE is computationally efficient compared to cross-validation. 

DCE exploits the shift invariance property requirement of the reconstruction kernel to 

provide a goodness measure of k-space based parallel MRI reconstruction algorithms. As 

an illustration of its utility, strategies for utilizing DCE to select the optimal kernel 

support for GRAPPA and the optimal calibration dataset for temporal GRAPPA 

(TGRAPPA (18)) are outlined with the presentation of in vivo results.  

 

1.2.2 Performance assessment 

The design of a parallel MRI reconstruction method should be validated for 

particular coil array geometries and sampling trajectory. This suggests the need for 

quantitative measures for assessing reconstruction performance. The performance of 
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parallel MRI reconstruction employing direct matrix inversion has been generally 

quantified using metrics such as g-factor (3) which measures the degree of noise 

amplification in reconstructed images. For indirect inversion based reconstructions, 

however, the noise amplification solely cannot provide a good performance assessment of 

the reconstruction because of the presence of many other dominant errors that include 

model errors (approximation error) and other noise-related errors. Tools for quantifying 

the total error for k-space based parallel MRI reconstructions have been lacking.  

 

The data consistency error (DCE) function introduced in Chapter 3 is proposed as 

a measure for quantifying the performance of k-space based parallel MRI reconstructions. 

It is shown by simulation on experimental data that there is a strong correspondence 

between DCE and the mean square error (i.e. the normalized mean square difference 

between the reduced-data reconstructed image and the full-data reconstructed image). 

The potentials of DCE as a quantitative metric for characterizing reconstruction error, for 

comparing different parallel image reconstruction algorithms, and more importantly for 

optimizing reconstructions are explored on GRAPPA and TGRAPPA reconstructions. 

 

1.2.3 Computational efficiency for real time accelerated dynamic datasets 

Reconstruction time is one of the most important factors to be considered in a 

parallel image reconstruction algorithm for real time accelerated dynamic acquisition. To 

reconstruct an image from an undersampled dataset, parallel imaging relies on prior 

knowledge of the coil arrays sensitivities. The coil sensitivity information is generally 

obtained through calibration. In dynamic MRI acquisition such as free breathing cardiac 
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imaging with flexible cardiac matrix coils, the coil sensitivities change in time due to 

respiration induced chest wall excursions. This requires that the calibration information 

be determined for every time frame, possibly leading to long reconstruction time. 

Reconstruction efficiency may be improved since the cyclic respiratory induced chest 

wall movement may cause many frames to carry approximately the same calibration 

information. 

 

In chapter 4, an approach is introduced that utilizes DCE to provide a consistency 

measure of the frame-to-frame calibration information change in real time dynamic 

parallel imaging. This tracking information can be exploited to improve the 

reconstruction efficiency and accuracy by allowing time frames to share the same 

calibration information and avoid using inconsistent calibrating frames. The method is 

demonstrated using TGRAPPA with in vivo free-breathing cardiac imaging data. 

Compared to the original TGRAPPA, the modified TGRAPPA produces images with 

reduced artifacts and allows for faster reconstruction. The method is simple and robust 

and can be applied to other real-time parallel dynamic image reconstructions. 

 

1.2.4 Computational efficiency for non-Cartesian trajectories 

While parallel imaging has enjoyed great success with sequences based on 

rectilinear sampling, incorporating non-Cartesian sampling into parallel imaging poses 

non-trivial challenges in the reconstruction. It has been recognized that in some 

applications, non-Cartesian sampling trajectories such as spiral (19) and radial (20) may 

be preferred. In general, parallel MRI reconstructions from partially acquired non-
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Cartesian k-space data require the solution of large linear equation systems, which pose 

greater challenges due to memory requirement and computational demand for inverting 

large matrices.  

 

In the last few years, several algorithms for reconstructing non-rectilinear 

undersampled datasets have been proposed (15,21-24). Despite the successes of these 

algorithms, no commercial scanner has been reported to support reconstruction of 

undersampled non-Cartesian k-space data. This suggests that it remains a challenge to 

rapidly and reliably reconstruct an image from undersampled non-Cartesian k-space data. 

This challenge is higher in applications involving large volume of datasets such as 

functional MRI (25), perfusion weighted imaging (26), and diffusion tensor imaging (27). 

 

Chapter 5 presents an approach for efficiently reconstructing non-Cartesian 

undersampled k-space datasets. Typically an indirect inversion based method, the 

approach operates on gridded k-space. A rigorous GRAPPA interpolation on the gridded 

data requires a different fitting kernel for each datum (24) because an invariant kernel is 

not applicable. Consequently, the reconstruction process can be very time consuming. To 

overcome this difficulty, a strategy is presented that exploits the pattern of energy 

distribution during the gridding process to reduce the number of kernels per coil, 

necessary to produce high quality image, down to the parallel imaging acceleration 

factor. This number of kernels per coil is only one kernel more than that of a normal 

Cartesian GRAPPA, a significant gain for non-Cartesian applications involving repetitive 
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measurements such as functional MRI, perfusion MRI, and diffusion tensor imaging. 

Reconstructions of in vivo undersampled spiral and radial datasets are demonstrated. 

 

1.2.5 SNR improvement in parallel Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is a recently developed MRI technique that can 

provide information regarding the architecture and microstructure of a tissue through 

characterization of free diffusion (i.e. Brownian motion) of water in tissue. The greatest 

technical difficulty in DTI acquisition is to overcome the effects of macroscopic tissue 

motion, while retaining sensitivity to microscopic water motion. Single-shot echo planar 

imaging (EPI (28)) is the most widely used acquisition strategy for DTI owing to its 

insensitivity to motion. However, limited spatial resolution, geometric distortion, and low 

SNR are serious EPI limitations (29). These limitations severely entangle the in vivo 

applications of DTI particularly in the regions of strong field inhomogeneities. 

 

Parallel MRI has been proposed as a means to reduce artifacts and improve 

spatial-temporal resolution in DTI. However, parallel MRI may compromise the SNR as 

a result of reduced acquired data, which is detrimental for DTI since SNR is often limited 

in DTI. In practice, multiple measurements are often performed to recover the SNR lost, 

which results in lengthy scan times, annulling the speed benefit of parallel imaging. It is 

therefore important to adapt parallel DTI sequences to improve image SNR without 

compromising the advantages of parallel MRI. 
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In Chapter 6, a single-shot multi-echo parallel EPI pulse sequence is proposed to 

improve the acquisition efficiency in parallel diffusion tensor imaging (DTI). It is 

demonstrated by simulation and by experiments that with an appropriate echo 

combination strategy the sequence can provide a SNR enhancement while maintaining 

the advantages of parallel EPI. It is also experimentally shown that this SNR gain can be 

utilized to reduce the number of measurements often required to ensure adequate SNR for 

accurate DTI measures. Additionally, it is shown that the multiple echoes can be used to 

derive a T2 map3, providing additional information that might be useful in some 

applications.  

 

 

1.3 Background 

This section describes principles and terminologies necessary for appropriate 

appreciation of the thesis aims. A more detail explanation of the physical and engineering 

principles of MRI can be found in many textbooks (30). To varying degrees and without 

rigorous derivation, the section provides the highlights of the physics behind MR signal 

generation and how this signal is translated into an image. To put parallel MRI in context 

and enable the reader to appreciate the necessity of its development, a brief description of 

spatial encoding and decoding in conventional MRI is provided as well as traditional 

strategies to accelerate the scan time. The basic concepts of parallel MRI and selected 

examples of parallel image reconstruction methods are described. 

 

                                                 
 
3 T2 map is a graphical representation of the spin-spin relaxation time distribution  (see section 1.3.1.2) 
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1.3.1 Review of MR physics 

Felix Bloch and Edward Purcell independently demonstrated the phenomenon of 

nuclear magnetic resonance (NMR) in 1946 (10,11). In 1952, they were both awarded the 

Nobel Prize in Physics for the discovery. NMR relies on a few principles. All elements 

with nuclear spin placed in an external magnetic field oscillate. The frequency at which 

they oscillate depends on the strength of the magnetic field.  These nuclei are capable of 

absorbing energy if exposed to electromagnetic energy at the frequency of oscillation. 

After absorption of the energy, the nuclei release or reradiate this energy to return to their 

initial state of equilibrium. This reradiated or transmitted energy is detected as MR 

signal. From the MR signal, information about physical and chemical properties of the 

excited elements can be obtained. NMR finds applications in many fields of science, 

medicine, and engineering. 

 

1.3.1.1 Nuclei behavior 

Certain nuclei (1H, 13C, 15N, 31P, among others) have spin states, and thus behave 

like tiny bar magnets with magnetic dipole moments. In the absence of magnetic field, 

the dipole moments are randomly oriented (Figure 1.1a). In the quantum world, this 

scenario is indicative of a degenerate state where all particles in the population are 

expected to reside in the same energy level. In the presence of a magnetic field the nuclei 

can align either towards or against the induced field (Figure 1.1b). Nuclei aligned with 

the field are in a lower energy state (spin-up) than those aligned against (spin-down). The 

energy difference between the states is given by ∆E = ħω0 where ħ is Plank’s constant 
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and ω0 is the Larmor frequency or resonance frequency. The Larmor frequency is given 

by 

0 0Bω γ= , [1.1] 

where B0 is the strength of the external magnetic field and γ is the gyromagnetic ratio of 

the nucleus under consideration. The current discussion is restricted to hydrogen nuclei 

1H as it is the primarily focus in MRI. The 1H atom gyromagnetic ratio is 42.58 

MHz/Tesla and its resonance frequency in a 1.5 Tesla magnetic field typical for MRI is 

approximately 63 MHz. A group of spins experiencing the same magnetic field has a net 

magnetization that represents the difference in the amount of spin-up and spin-down 

particles. An approximation of this net magnetization is given by  

2 2
0

0 04
s

s
s

B N
M , kT

kT

γ ρ ω≈ �
ħ ħ . 

[1.2] 

Here, k is the Boltzmann’s constant, Ns is the number of spins in the group, Ts is the 

sample’s temperature, ρ is the spin density, M0 is the magnetization vector magnitude, 

and B0 is the main magnetic fields strength. It is important to note from Eq. [1.2] that the 

net magnetization can be maximized in practical circumstances by utilizing high static 

magnetic field strengths, interrogating a large spin population, or lowering the sample’s 

temperature (this later strategy is not suitable for medical purposes)(31). 

 

At equilibrium, the net magnetization is aligned with the static main magnetic 

field orientation (Figure 1.1c). In transition state, the net magnetization is composed of 

the longitudinal component Mz along the orientation of the main magnetic field, and the 

transversal part MT which is perpendicular to the longitudinal direction. 
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Figure 1.1 Spin behavior in the presence of an external magnetic field 

 

1.3.1.2 Relaxation phenomenon 

The magnetization vector can be rotated from its equilibrium orientation 

(longitudinal) towards the transverse plane by applying a radiofrequency (RF) excitation 

pulse having the resonance frequency. The overall effect of the RF excitation can be 

measured by an angle α, which is given by 

1B tα γ≅ ∆ . [1.3] 

In Eq. [1.3] B1 is the strength of the RF field and ∆t is the duration of the RF pulse. If the 

spin system is left alone at this point, the nuclei will return to their equilibrium state. The 

return of the nuclei to their equilibrium state does not take place instantaneously, but 

rather takes place over some time. Two physical processes govern this return: the 

relaxation back to equilibrium of the longitudinal component of the net magnetization 

referred as T1-relaxation, and the relaxation back to equilibrium of its transversal 

component known as T2-relaxation.  

 

B0 B0 M0 

(a) Spins randomly 
distributed in the absence 
of an external magnetic 
field 

(b) Spins in the external 
magnetic field B0. Some are 
aligned with B0 (parallel) and 
some are not (ant-parallel) 

(c) The magnetization vector 
M0 resulting from the 
difference between parallel 
and anti- parallel spins  



www.manaraa.com

 
 

14

The T1-relaxation process is due to interaction of the spins with the surrounding 

tissue (spin-lattice interaction). The re-growth of the magnetization, after it is rotated 

from its equilibrium orientation is given by 

1
0 1

t

T
zM ( t ) M ( e )

−
= − . 

[1.4] 

T1 in human is on the order of 100 – 1000 ms and is specific for every tissue [85, 36, 

101]. 

 

The T2 relaxation process is related to the spin-spin interaction. Spins generate 

their own small magnetic fields. The combination of these micro fields with the main 

magnetic field leads to local variations of the net field, which is generally referred as 

magnetic field inhomogeneity. This in turn causes spins to resonate at different 

frequencies creating phase shift over time, since each spin experiences a slightly different 

magnetic field. Over time, this will diminish the transverse magnetization. This decay of 

the transverse magnetization is given by 

2
0

t

T
TM ( t ) M e

−
= . 

[1.5] 

A typical T2 relaxation time for protons in human is 40 – 100ms and is always shorter 

than T1 time. Eqs. [1.4] and [1.5] are particular solutions of the generalized Bloch 

equations [101].  

 

For most soft tissues in the human body, the proton density is somewhat 

homogeneous and therefore does not contribute in a major way to signal differences seen 

in an image. However, T1 and T2 can be dramatically different for different soft tissues, 
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and these parameters are responsible for the major contrast between soft tissues. T1 and 

T2 are strongly influenced by the viscosity or rigidity of a tissue. Generally speaking, the 

greater the viscosity and rigidity, the smaller the value for T1 and T2. It is possible to 

manipulate the MR signal by changing the way in which the nuclei are initially subjected 

to electromagnetic energy. This manipulation can change the dependence of the observed 

signal on three parameters: proton density, T1 and T2. This explains the existence of a 

number of different MR imaging techniques ("weightings"), which accentuate some 

tissue properties and not others. 

 

1.3.1.3 The MR signal 

At equilibrium, the angle between the proton magnetic moment and the external 

magnetic field is not exactly zero. The spinning magnetic moment experiences a torque 

from the constant magnetic field. This torque, which is perpendicular to both the 

magnetic field and the proton magnetic moment, causes the proton moments (and 

subsequently the net magnetization vector) to precess, around the main magnetic field 

axis at the Larmor frequency. When the net magnetization is flipped toward the 

transverse plan by application of an RF pulse, its precessional motion results in a time-

varying magnetization in the transverse plane. The oscillating transverse magnetization 

MT produces a changing magnetic flux which in turn induces current in a receiver coil 

placed along the object. The voltage induced around the RF coil can be expressed in 

terms of a volume integral of MT, 

3rr r iw( )t
Tv( t ) Re[ C( )M ( )e d r ]−∝ ∫ . [1.6] 
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In Eq. [1.6], r is the 3-dimensional spatial vector and C(r) represents the spatially 

varying RF coil sensitivity. The complex signal, which is obtained by demodulating the 

voltage v(t) with cos(ω0t) and sin(ω0t) (quadraturre demodulation (32)), is given by 

0 3rr r i( ( ) )t
Ts( t ) C( )M ( )e d rω ω− −= ∫ . [1.7] 

 

The following paragraphs describe the two most basic MR experiments possible: the free 

induction decay (FID) and the spin echo. An understanding of the relaxation mechanism 

governing a given acquisition is crucial for a given application and the resulting contrast 

in MR images. 

 

1.3.1.3.1 Free induction decay (FID) 

After the application of a 90° RF pulse, spins in the transverse plane are subjected 

to small magnetic field irregularities of the sample. These irregularities can be caused by 

magnetic susceptibility differences among tissues composing the sample, especially near 

tissue interfaces with bone and air. In addition, the main magnetic field may not be 

perfectly uniform. The overall effect of these irregularities is the variation of the spins’ 

precession frequencies across the sample. This frequency dispersion causes the transverse 

magnetization to decay faster at a rate determined by the new parameter T2
*, given by 

2 2 2

1 1 1
* 'T T T

= + , 
[1.8] 

where T2
’ is the parameter reflecting the local magnetic environment of the sample. The 

transverse decay given by Eq. [1.5] is now governed by T2
*. For an FID experiment with 
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a repetitive excitation by a 90° RF pulse with an interval TR (repetition time) between the 

excitations, the received signal at steady state is given by 

1 21
*

tTR

T Ts( t ) ( e )eρ
−−

∝ − . 
[1.9] 

 

1.3.1.3.2 Spin echo 

While T2
’ effects dominate every decay curve, there is a possibility of recovering 

a point in the MR signal with a pure T2. This process is instigated by a 180° RF 

refocusing pulse at some time TE/2 after the 90° excitation pulse. This RF refocusing 

pulse causes the dephasing spins to reverse direction and rewind back through the 

magnetic environment. At a time point TE (echo time) after the excitation pulse, the 

magnetization will have recovered completely by T2
’ effects but not by T2. This process 

of recalling the magnetization is called spin echo. The steady state received signal for a 

repetitive spin echo experiment is given by 

1 21
TR TE

T Ts( t ) ( e )eρ
− −

∝ − . 
[1.10] 

 

1.3.2 Review of MR Imaging 

The previous section was devoted to a basic understanding of MR signal 

generation without much regard how an image is created from the available signal. This 

section describes how the proton spin system, and subsequently the MR signal, is 

manipulated in order to produce an MR image. 
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The traditional diffraction methods to resolve an object within the image cannot 

be applied to MR signal due to its long wavelength (e.g. 5 m in vacuum at 1.5 Tesla). In 

MRI, spatial information is encoded into the MR signal prior to acquisition, and the 

image is reconstructed by properly decoding the spatially encoded MR signal. 

Substituting Eq. [1.1] and Eq. [1.2] into Eq. [17] and taking into account the dependence 

of the net magnetization, the external magnetic field, the spin density, and the flip angle 

on the spatial position, the MR signal can be expressed as 

0

2 2
3

4
rr r r ri ( B( ) B )t

s

s( t ) C( )sin( ( ))B( )e ( )d r
kT

γγ α ρ− −= ∫
ħ

. 
[1.11] 

where B(r) is the external magnetic field consisting of the sum of the constant term B0 

and a spatial varying component. In Eq. [1.11], the signal modulation by T2 or T2
* 

relaxation is intentionally neglected. Eq. [1.11] contains four spatially dependent 

functions: the desired spin density, ρ(r), and the other three function, C(r), α(r), and B(r) 

that can be known a priori. These three functions represent spatial encoding at three 

distinct stages of an MRI experiment: First, the RF pulse provides an excitation pattern, 

α(r), which localizes the spins to be imaged; Second, the magnetic field, B(r), dictates the 

phase evolution of the selected spins; Last, the coil sensitivity, C(r), weights the localized 

spins. 

 

The following sub-sections describe the encoding and decoding methodologies as 

are performed in existing conventional and parallel MRI techniques. 
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1.3.2.1 Spatial encoding using RF excitation profile 

Localizing the spins prior to imaging is an important step in MRI acquisition. It 

may help select only a “region of interest” and therefore provides a speed advantage (a 

smaller volume of tissue can be imaged much faster at a given resolution than a larger 

extended sample). It also provides the flexibility to MRI to conform to the acquisition 

procedure (e.g. acquisition in slice) of order modalities such as Computed Tomography 

(CT) and Positron Emission Tomography (PET). 

 

The localization of the spins can be selective or non-selective. For selective 

localization, only the spins contained within the selected slice or volume will be 

interrogated by the imaging sequence. The slice profile is established by creating a linear 

magnetic field gradient across the sample. The external magnetic field experiencing a 

linear spatial perturbation can be expressed as the sum of the static component B0 and the 

linear magnetic field gradient G(r) given by 

0r rB( ) B G( )= + , r G rG( )=
r
� . [1.12] 

Spins experience a slightly different local magnetic field based on their location in the 

slice gradient. Spins within a certain bandwidth of Larmor frequencies that match the 

bandwidth of the RF pulse are excited. Slice profiles and RF pulse shapes have an 

approximate Fourier relationship, so that in order to acquire a rectangular slice, a sinc- 

shaped RF pulse is required. This localization technique may result to a FID or spin echo 

signal. Complex volume shapes can also be selected but requires longer RF pulse 

excitations. 
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In non-selective localization, all spins falling in the area of sensitivity of the RF 

and whose resonance frequencies are within the RF excitation bandwidth will be excited. 

A rectangular shaped RF pulse is required in this case. 

 

1.3.2.2 Spatial encoding using magnetic field gradients 

To image the selected volume, conventional MRI relies on the gradient fields for 

spatial encoding in the remaining spatial directions. The Larmor frequency of a spin is 

linearly proportional to its position when the static field is augmented with a linearly 

varying field. This use of a gradient to establish a relationship between the spins along 

some direction and their precessional rates is referred to as frequency encoding along that 

direction. Assuming that a uniform RF excitation pulse is applied to localize the spins 

and rotated the magnetization at a flip angle α(r) = α0 and that the coil sensitivity C(r) is 

combined with the spin density ρ(r) to form the coil-weighted spin density ρc(r), Eqs. 

[1.1], [1.11], and [1.12] can be combined to yield the simplified MR signal equation 

given by 

2 2
3

0 04
ri G( r )t

c
s

s( t ) sin( )B e ( )d r
kT

γγ α ρ−= ∫
ħ

. 
[1.13] 

To obtain Eq. [1.13], the fact that B0 is typically several orders of magnitude greater than 

G(r) has been taken into account. 

 

1.3.2.2.1 k-space and elements of a pulse sequence 

By considering that the field gradient G
r

is time-dependent, the phase evolution 

(due to spin dephasing) over time can be expressed in terms of k·r where the vector k is 

defined as 
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0 G( t )dtτγ− ∫k=
r

. [1.14] 

Substituting Eq. [1.14] into Eq. [1.13], the later simplifies to 

2 2
3

0 04
k rk ri

c
s

s( ) sin( )B e ( )d r
kT

γ α ρ−= ∫
�ħ

. 
[1.15] 

This data space is called k-space (Figure 2b). The spatial encoding functions in Eq. [1.15] 

are given by 

k r
k r iE ( ) eβ −= � . [1.16] 

where β is a scalar accounting for the constants outside of the integral of Eq. [1.15]. Ek 

are Fourier basis functions, and hence this method of spatial encoding is commonly 

called Fourier encoding.  

 

Encoding is generally accomplished in two steps: point-wise then continuously. In 

point-wise encoding, gradients are turned on for a short period of time to dephase the 

spins in the sample. During that time, the spins’ phases, represented by k·r, evolve over 

time depending their spatial position. This is referred to as phase encoding. The process 

of turning on the gradient for a short time is equivalent to moving the k-space position 

away from the center k-space (k = 0) along one direction (phase encoding direction). 

After a phase encoding step, the signal is continuously sampled with a gradient turned on 

in the readout direction (frequency encoding direction). This continuous sampling 

collects an entire line of k-space in one acquisition. The gradient activity as a function of 

time on each orthogonal axis is typically represented, along with RF activity, in a pulse 

sequence diagram (Figure 2a).  
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Although ρc(r) is a continuous function, the discretization of the k-space and 

therefore the continuous position vector r can be applied to ρc(r) resulting to a matrix 

formulation of Eq. [1.15] as  

cs Eρ= . [1.17] 

The encoding matrix E contains the Fourier basis embedding the effects of gradient 

encoding. The elements in the signal vector s are Fourier components of the coil-

weighted spin density ρc evaluated at the corresponding k-space locations k. An image is 

reconstructed by applying an inverse Fourier transformation on the acquired dataset. In 

the special cases of rectilinearly sampled k-space trajectories, the fast Fourier 

transformation (FFT) algorithm can be applied. Additionally, the Fourier transformation 

is a unitary transformation that provides an optimal noise averaging benefit. Here, the 

reconstruction is efficiently accomplished without an explicit effort of determining E, 

computing E-1. 

 

For non-rectilinearly sampled (non-Cartesian) trajectories, the non-uniform 

sampling density across k-space prevents using a straightforward inverse Fourier 

transform to reconstruct the image (33). Rather, gridding (34) is first performed to 

interpolate the data onto a Cartesian grid before the application of the inverse Fourier 

transform. 

 

1.3.2.2.2 Field of view and spatial resolution 

A rectilinear sampling of the k-space trajectories with an infinite impulse chain 

(i.e. k = ±n∆k, n = 0,1,2,..., ∞) results to a periodic replication of the object in the image 
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domain. If the object is of finite length L and the sampling interval in k-space satisfies the 

Nyquist criterion for ∆k≤2π/L, then the object can be fully reconstructed without aliasing. 

The maximum k-space sampling interval, ∆k, that allows reconstruction without aliasing 

defines the field of view (FOV), which is given by  

2

k
FOV

π=
∆

. 
[1.18] 

 

In practice, the k-space trajectories are sampled with a finite impulse chain (i.e. k 

= ±n∆k, and abs(k) ≤ kmax). In this case, the voxels reconstructed by discrete Fourier 

representation are no longer ideal delta functions. Instead, they are sinc functions with 

zero crossings at integral multiples of π/kmax, which typically defines the image pixel 

size, 

maxk
Pixel Size

π= . 
[1.19] 

 

1.3.2.2.3 Traditional strategies for accelerated acquisition 

The sequential encoding of MR signal as described in section 1.3.2.2.1 imposes a 

significant time penalty in MRI. To give a feeling for the time this process takes, the 

acquisition of an image with resolution 256 × 256 acquired with a repetition time (TR) of 

several hundred milliseconds requires a total time of several minutes. Imaging times of 

this length haves obvious implications. The subject is liable to move during imaging 

causing artifacts in the images, and dynamic processes changing on a time scale shorter 

than this are difficult to capture.  
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  Figure 1.2 Elements of a pulse sequence and k-space 

 
 

Many acquisition strategies have been proposed to accelerate MR scans. 

Minimization of TR by increasing gradient strength can lead to accelerated imaging (e.g. 

(35)). Although fast acquisitions can be done in this way, limits are quickly reached 

because of instrumentation cost and human tolerance. Indeed, increasing gradient 

strength requires more powerful amplifiers and gradient coils capable of taking the 

increased current and voltage, which adds significantly to the cost of the scanner. More 

importantly, physiological limits associated with the rate of switching of such gradients 

α 
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(a) Pulse sequence diagram describing the sequence events involved in the three 
stages of spatial encoding in conventional MRI. The first action is the RF 
excitation along with the Gz gradient (first lobe) that select a slice, followed by 
the refocusing of the slice select gradient (2nd lobe of Gz).  The next stage is phase 
encoding (Gy gradient) and readout pre-phasing gradient (first Gx gradient 
lobe) that dictate the phase evolution. Finally the frequency-encoding gradient 
(Gx) is applied while the signal is acquired (ADC). In order to fully encode an 
image, this sequence is repeated (at time intervals of TR) for different amplitudes 
of the phase encoding gradient. (b) A schematic representation of k-space. When 
the phase encoding gradient is zero the pre-winding gradient takes us to the left 
of k-space and the readout line in k-space along the phase encode direction by an 
amount ∆k. The magnitude of ∆k is inversely proportional to the field of view 
(FOV) and the maximum extent of k-space is inversely proportional to the voxel 
size. 



www.manaraa.com

 
 

25

are eventually reached. Exposing the human nervous system to a time dependent 

magnetic field may lead to spontaneous nerve firing ((36,37)) known as peripheral nerve 

stimulation (PNS). 

 

An approach that has attracted widespread use due to its favorable temporal 

properties is to acquire more than one phase encode lines per TR. This approach has led 

to a family of sequences called echo train imaging that includes echo planar imaging 

(EPI) (28) and spiral imaging (19). However, such sequences compromise both contrast 

and resolution, and in some cases, lead to image distortion. 

 

Another strategy is to reduce the field of view without aliasing, which can be 

done by localizing the region of excitation (38,39). Unfortunately, complex spatial 

localization often requires long radio frequency (RF) pulse trains and if the RF pulse 

length is long compared to the relaxation times of the sample being imaged, then the 

region of excitation will be ill defined.  

 

Partial Fourier imaging (40-42) is another solution. It exploits the theoretical 

conjugate symmetry of k-space with part of k-space remaining uncollected and then 

repopulated using various methods. For dynamic imaging where multiple time point 

images are acquired, there are many methods that improve the temporal resolution by 

updating different parts of k-space at different frequencies (more often at the center than 

edges (43)).  
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The improvements in MR image acquisition speed over the past two decades have 

allowed significant advances in the visualization and characterization of moving 

structures. While this is a significant accomplishment, conventional MRI has more or less 

reached its imaging speed limit imposed by safety guidelines regarding magnetic field 

gradient switching rate and RF power deposition. In the next section, a safe alternative 

strategy to accelerate image acquisition is introduced: coil encoding. 

 

1.3.2.3 Spatial encoding using RF receiver coil sensitivities 

To image the localized spins, parallel MRI relies on field gradients and the 

sensitivities of an array of receiver coils for spatial encoding. The spatial encoding 

resulting from the variations in sensitivities of receiving RF coils is used to reduce the 

number of gradient encoding steps necessary for a conventional MRI acquisition 

procedure. By analogy to Eq. [1.15], the MR signal received in individual coil elements 

can be expressed as 

2 2
3

0 04
i

l l
s

s ( ) sin( )B e C ( ) ( )d r
kT

γ α ρ−= ∫
�k rk r r

ħ
. 

[1.20] 

where sl(k) represents the MR signal received by the l th coil with spatial sensitivity Cl(r). 

Here, the MR signal is encoded by hybrid encoding functions of magnetic field gradients 

and the coil sensitivities given by 

k r
k r r i

,l lE ( ) C ( )eβ −= � . [1.21] 

The extra sub-index l as compared to Eq.[1.16] emphasizes that matrix that the number of 

encoding functions has increased by a factor equal to the number of array elements. Note 

that if the coil sensitivities can be combined such that the composite sensitivities form 
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spatial harmonics (≈e-im∆k·r, where m is the harmonic number and ∆k is the k-space 

sampling interval), then the hybrid encoding functions become Fourier basis and the 

reconstruction can benefit from the direct inverse Fourier transform as convention MRI 

reconstruction for rectilinear sampling trajectories. These spatial harmonics would 

represent redundant encoding functions. This means that some of the gradient encoding 

steps can be omitted without affecting the necessary overall encoding steps.  Parallel MRI 

exploits this redundancy in spatial encoding to accelerate the acquisition. Encoding 

gradient steps may be omitted by a factor (“acceleration factor”) greater than one and less 

or equal to the number of array elements. In order words, the k-space trajectory only 

needs to traverse a subset of the original k-space locations, resulting in a proportionally 

faster acquisition. 

 

1.3.2.3.1 Parallel MRI reconstruction methods 

Phased array coil technology was originally developed to improve the intensity 

uniformity of MR images obtained using surface coils, while preserving their inherent 

gain of signal-to-noise ratio (SNR). The idea of using multiple RF receivers to accelerate 

MRI scans was first introduced in the late 1980s (44-46). Additional contributions in that 

effort were made in the early 1990s (47-49). However, the first successfully accelerated 

in vivo images were demonstrated in 1997 using the SiMultaneous Acquisition of Spatial 

Harmonic (SMASH) technique (2) following by the SENSitivity Encoding (SENSE) 

technique in 1999 (3).  
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Since the inception of SMASH and SENSE, various improvements and variations 

(4-9,15) have been developed. In all cases, the procedures involve an explicit 

determination of the encoding matrix E and its inverse E-1, as opposed to conventional 

MRI. This is generally accomplished with two type of dataset: coil reference data and 

image data. The coil data is used to determine the encoding matrix E and the image is 

reconstructed by computing the inverse of E. 

 

1.3.2.3.1.1 Sensitivity calibration 

Calibration with coil sensitivity maps 

As indicated in Eq. [1.21], knowing the coil sensitivities C(r) is indispensable to 

determine the encoding matrix E. C(r) can be theoretically calculated using Maxwell’s 

Equations (or the Biot-Savart law for sufficiently low frequencies) in combination with 

the principle of reciprocity (50) if the coil array geometry and location are known. In 

practice, however, the performances of coils vary depending on the electromagnetic 

properties of the subject. As a consequence of the intimate interaction between coil and 

subject, coil sensitivity information is preferably recalibrated for each subject even for 

rigid and static coils. The coil sensitivities can be obtained from coil-weighted images 

obtained using conventional MRI acquisition and reconstruction methods (Eq. [1.17]). 

These coils images may have lower spatial resolution than the accelerated diagnostic 

images, but are required to have a sufficient FOV to satisfy the Nyquist criterion. To 

eliminate the spin density component, an additional image can be acquired at the same 

contrast using a birdcage body coil designed to have uniform RF spatial reception. A 

quotient is calculated between each of the array coil images and the birdcage coil image 
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to obtain a scaled version of the sensitivity of that coil. If a body-coil image is not 

available, a sum-of-squares combined images of all the array coil images can be used to 

divide out the spin density. 

 

Calibration data can be obtained from a separate scan before or after the image 

acquisition. Because of the requirement of external information, this approach is 

generally known as external calibration. Alternatively, the calibration scan can be 

incorporated as a part of the image acquisition, and the calibration data can be extracted 

from the image dataset. This approach is called auto-calibration or self-calibration. The 

crucial difference between the external- and self-calibration approaches lies in the timing 

of the acquisition of calibration data relative to the image acquisition.  

 

Calibration without coil sensitivity maps 

Typically a self-calibration method, this method allows coil sensitivity calibration 

without explicitly reconstructing the calibration images. A fit can be performed to 

determine the coefficients (weights) relating the reference k-space data, referred as 

calibrating signals, to the main data acquired from all coils. These weights, implicitly 

containing the coils sensitivity information, are used to reconstruct the image. The 

calibrating signals can be collected separately or integrally to the acquisition.  However, 

they occur within the same scan and therefore are referred to as auto-calibrating signals 

(ACS). 
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1.3.2.3.1.2 Solving the linear inverse problem 

One distinguish feature between various parallel MRI reconstruction techniques 

currently available is the specific way of posing and solving the common generalized 

linear inverse problem s = Eρ. In this section, two major classes of parallel image 

reconstruction are discussed and allied methods are referenced in each case. The two 

classes are direct and indirect inversion reconstructions. 

 

Direct inversion reconstruction 

This approach appears in the case where the encoding matrix E is known and the 

reconstruction entails finding a matrix inverse E-1 such that E-1E = I and thus ρ = E-1s, 

where I is an identity matrix.  In general, the encoding matrix has full rank and more 

rows (i.e. encodings) than columns (i.e. pixels to resolve), i.e E is over-determined. As a 

result, the Moore-Penrose pseudo-inverse is generally used to provide a least squares 

solution. To take into account possible differences in noise levels and the correlation 

between different coil channels, the receiver noise matrix Ψ is included in the 

reconstruction: 

1 1 1ρ E E E sH H( )− − −= Ψ Ψ , [1.22] 

where the superscript (·)H denotes Hermitian conjugation. SENSE (3) is a notable 

representative of this approach. In SENSE, both the coil reference data and the 

undersampled data are operated in the image domain.  

 

Block-by-block inversion performed through matrix diagonalization is a variant to 

the direct inversion strategy. Since the coil sensitivities are in general band-limited, by 
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Fourier transforming the encoding matrix E along the fully sampled dimension, the 

resulting encoding matrix, EFT, in that hybrid space is approximately band-diagonal. An 

inverse (EFT )-1
block-diag can be determined efficiently by applying block-by-block 

inversion. E-l is obtained by performing another Fourier transformation of (EFT )
-1

block-diag.  

g-SMASH (9) and Space-RIP (4) are representative of this approach. In g-SMASH, the 

reconstruction is performed with the coil data in k-space and this constitutes the main 

difference with SPACE-RIP in which the coil data are kept in the image domain. While 

this block-by-block inversion provides a numerical stability and computation efficiency 

advantage over the full matrix inversion, it makes the inversion inexact, E-1E ≈ I. 

 

By allowing for more general sampling schemes, where every pixel of the 

undersampled image may potentially alias with all the others, higher computational costs 

are incurred with direct inversion as it becomes necessary to invert larger matrices. 

However, while it may be numerically unstable and computationally intensive to 

calculate the pseudo-inverse, the direct inverse reconstruction has the appeal of a 

theoretically exact solution. Various regularization techniques (14) have been effectively 

utilized to mitigate the instability of this reconstruction strategy. With direct inversion, 

however, an explicit determination of the coil sensitivity maps is required and in cases 

where obtaining precise coil sensitivity data may be difficult, the inversion can constrain 

the solutions to produce more benign errors in the final reconstructed image. 

 

Indirect inversion reconstruction 
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The inverse problem can be solved without an explicit determination of E. Indeed, 

coil sensitivity is in general band-limited in k-space. The effect of multiplication of the 

imaged object by these coil sensitivities is therefore a finite-kernel convolution in k-

space. The original Fourier components of the object of interest are locally spread in the 

acquired data. The indirect inversion approach estimates the missing datum by linearly 

interpolating a few local k-space data. This procedure in its simplified form is represented 

by 

k k km
l l

l
s( m ) w s ( )+ ∆ = ∑ , [1.23] 

where sl(k) represents the acquired signal at the location k received in the coil l, s(k+m 

∆k) is the reconstructed signal at the location (k+m ∆k), ∆k is the sampling interval along 

k. For the mth spatial harmonic (or the number of ∆k offset of the missing line from the 

nearby acquired lines, counting according to an originally defined direction), m
lw  is the 

interpolation weight associated to sl(k). For Cartesian sampled k-space, the interpolation 

weights are assumed to be shift invariant in the entire k-space, providing a significant 

computational efficiency to the indirect inversion strategy. Notable representatives of this 

strategy include SMASH (2), AUTO-SMASH (51), VD-SMASH (52), and GRAPPA (8). 

 

In SMASH, an explicit estimate of the coil sensitivity maps is required and the 

weights are derived by fitting the sensitivities to spatial harmonic as follows: 

m m
l l

l
w C ( ) e− ∆ ⋅=∑

k rr . [1.24] 

These weights are then used to combine the signals measured in each coil (Eq. [1.23]) 

and generate a composite signal at both sampled and originally omitted locations. This 
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approach only works well with a linear coil array and is not valid for general coil 

geometries.  

 

AUTO-SMASH, VD-SMASH, and GRAPPA do not explicitly determine the 

sensitivity maps. Instead, the interpolation weights are obtained by fitting the auto-

calibrating signals (ACS) to the main data acquired from all coils. A simplified 

representative of this process is given by 

k k kACS m
l l l

l l
s ( m ) w s ( )+ ∆ =∑ ∑ . [1.25] 

The main differences between the implementation procedures of these three methods 

reside in the number of ACS used, the number of interpolated data per coil, and the way 

the composite final image is generated. GRAPPA, which is an improved version of 

SMASH, allows arbitrary coil geometries. A more detail description of its procedure is 

provided in chapter 2. 

 

Although the indirect inversion approach provides the advantages of numerical 

stability and computational efficiency over the direct inversion strategy, the indirect 

inversion represents an approximate solution to the inverse problem. While the role 

played by regularization is explicit for direct inversion reconstruction, the conditioning of 

the indirect inversion reconstruction is largely implicit in the approximation made in the 

reconstruction. Regularization generally reduces noise at the expenses of increased 

artifact (53). Tradeoffs between inexactness (artifact) and numerical stability are 

important subjects of Chapters 2, 3, and 4.  
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For non-Cartesian sampled k-space, the interpolation weights can be dependent on 

the k-space location. As a result, the interpolation weights ideally need to be determined 

for each k-space point, which can lead to significant reconstruction time penalty. PARS 

(15) is a representative of the indirect inversion reconstruction for non-Cartesian sampled 

k-space. A strategy to alleviate the time penalty associate with the indirect inversion 

reconstruction of non-Cartesian undersampled k-space data is an important subject of 

Chapter 5. 

 

1.3.2.3.2 Limits of parallel MRI 

Parallel MRI is achieved at the cost of reduced signal-to-noise ratio (SNR). The 

reduction in SNR stems from two factors: the reduced number of data samples, and the 

instability in the reconstruction due to correlations in the spatial information as 

determined by the geometrical arrangement of the array coil. The first factor is intrinsic 

to parallel MRI philosophy, which is to acquire less k-space samples in order to reduce 

scan time, and is therefore inevitable. A strategy that mitigates this issue in some 

applications is discussed in Chapter 6. The second factor may be alleviated by optimizing 

coil geometry (54,55) or by improving the stability and accuracy of the reconstruction 

algorithm. The noise amplification, which occurs as a result of the reconstruction process, 

is generally quantified by the g-factor. Given this, the relationship between SNR of an 

undersampled MRI reconstructed image (SNRred) and that of the same fully sampled 

reconstructed image (SNRfull) is given by 

full
red SNR

SNR
g R

= , 
[1.26] 
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where R is the acceleration factor. The g-factor depends on the spatial correlations 

between the coils and to some extent on the number of coils (3). It seems to increase 

abruptly if higher acceleration factors are attempted and so the g-factor is thought to 

represent an intrinsic limit to parallel MRI speed. In practice, the accelerator factor used 

is largely lower than the number of coil. This provides a vastly over-determined system 

of equations and therefore improves the numerical condition of the matrix inversion 

process.  

 

1.3.2.3.3 Parallel transmit 

Localizing the spins (as discussed in chapter 1.3.2.1) falling within a complex 

volume shape requires long RF pulse trains and if the pulse length is long compared to 

the relaxation times of the sample then the region of excitation will be ill defined. Parallel 

transmit is a recently introduced strategy inspired from parallel imaging technique which 

may now be making possible the excitation of complex volume within realistic time 

scales (56,57). An in-depth exposition on this topic is beyond the scope of this 

dissertation. Nonetheless, transmit encoding is a niche method. 

 

 

1.4 General Summary 

This chapter has briefly described basic principles pertinent to the understanding of 

parallel MRI in order to provide a platform for discussion of the following chapters. 

Challenges that still hinder some aspects of clinical and research applications of parallel 

MRI have been outlined. Chapters 2-6 are the main contributions of the thesis and are 
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designed to be individually self-contained. Chapter 2 establishes an accurate method for 

choosing the optimal reconstruction kernel that balances the conflicting demands between 

fit accuracy and stability in parallel MRI reconstruction in k-space. Along the same line, 

Chapter 3 introduces a simple and robust quantitative metric that can be used for multiple 

purposes including reconstruction performance assessment, comparison of reconstruction 

algorithms, and optimization of the tradeoff between artifact and SNR. Examples of the 

use of the metric to select reconstruction parameters in GRAPPA and TGRAPPA(18) are 

provided. Chapter 4 introduces a new strategy to improve reconstruction efficiency in 

real time dynamic parallel MRI. This strategy is based on an automatic passive tracking 

of the frame-to-frame coil sensitivity information change. Chapter 5 proposes an efficient 

method for non-Cartesian parallel MRI reconstruction, which is based on successive 

convolutions in k-space. Chapter 6 concludes the thesis by introducing a simple and 

convenient method for improving SNR in parallel DTI acquisition.  
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CHAPTER 2. CROSS-VALIDATION-BASED KERNEL SUPPORT 

SELECTION FOR IMPROVED PARALLEL MRI 

RECONSTRUCTION IN K-SPACE4 

 

 

 

This chapter introduces a cross-validation based method for selecting the 

reconstruction kernel that balances between the conflicting demands of fit accuracy and 

stability in simply k-space based parallel MRI reconstruction. The result is an optimized 

tradeoff between artifacts and noise. The development presented here is based on 

GRAPPA reconstruction algorithm although it can be readily extended to other 

reconstruction methods. As demonstrated with experimental data, the method improves 

image reconstruction with GRAPPA. Because the method is simple and applied in post-

processing, it can be used with GRAPPA routinely. 

  

 

2.1 Introduction 

In parallel MRI employing indirect inversion reconstruction (1-9), the missing k-

space data are estimated by interpolation between the measured k-space data points. The 

interpolation kernel (or matrix) for each coil can be determined for a given acquisition 

                                                 
 
4 The work in this chapter has been published as “Nana R, Zhao T, Heberlein K, Laconte SM, Hu X. Cross-
validation-based Kernel Support Selection for Imrpoved GRAPPA Reconstruction. Magn Reson Med 2008; 
59(4):819-825” 
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scheme if coil sensitivity maps are known (10). With the generalized auto-calibrating 

partially parallel acquisition (GRAPPA) technique (8), the interpolation kernel is 

estimated using calibration lines by assuming a small kernel size and k-space invariance 

of the kernel. A recent extension of GRAPPA includes k-space data in the readout 

direction in the interpolation to improve reconstruction (11).  

 

The GRAPPA procedure can be viewed as a special case of k-space interpolation in 

which a truncated version of the interpolation kernel support is used. The kernel weights 

are estimated through the least squares solution of a linear system of equations relating 

the acquired signals to auto-calibrating signal (ACS) lines. It can be inferred from this 

procedure that two main categories of error exist with the GRAPPA technique: model 

error and noise-related error. Model error has two components: one from using a limited 

number (as well as position) of ACS lines instead of the true coil sensitivity maps and the 

other from using a limited kernel size. Noise-related error arises from noise in the 

measured data and includes noise-induced errors that occur during kernel weights 

estimation, mainly due to the matrix inversion process (inversion error (10)), and errors 

that result from the application of the weights to noisy measured data. It is well 

recognized that the number and position of ACS lines used in the parameter estimation 

and the size and shape (or configuration) of the GRAPPA reconstruction kernel support 

significantly affect the reconstruction quality available with GRAPPA (12). For a given 

data set, the error due to the use of limited ACS line is predefined (i.e. the number and 

position of ACS lines are given) and only the kernel support can be varied to influence 

the model error and the noise-related error. As with any fitting approach, the model error 
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is expected to decrease with increasing kernel size while the noise-related error is 

expected to increase with the kernel size.  To date, the problem of how to choose a kernel 

support that optimizes the tradeoff between these errors has not been fully addressed. The 

choice of the kernel support has been shown to depend on the coil configuration, noise 

level in the acquired data, imaging FOV and orientation, and number and position of 

ACS lines (13). Therefore, GRAPPA implementations employing a fixed kernel support 

for all situations, as commonly used, are unlikely optimal. 

 

Recently, a rank-revealing QR factorization was used to select the most linearly 

independent columns in the coefficient matrix of fit formed from alignment of ACS 

points and including a larger range of local acquired signals around each ACS point (13).  

In doing so, the kernel support shape (or configuration) that minimizes the noise 

amplification during weights estimation is automatically selected whereas the kernel size 

is intuitively chosen as in common implementation of GRAPPA. Unfortunately, this 

strategy only focuses on minimizing error in the inversion process without taking into 

account other errors. A more general strategy that considers all types of errors is therefore 

of interest.  

 

This work presents a method based on cross-validation (CV) (14) for selecting the 

optimal kernel support in GRAPPA reconstruction. In this method, the GRAPPA kernel 

selection problem is framed as a model selection problem and cross-validation is used for 

selecting a regression model among a group of candidate models. Unlike other methods 

such as Akaike (15), cross-validation does not rely on specific statistical properties of the 
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data or models being used (16). For a given accelerated data set, our method 

automatically selects the kernel support in GRAPPA reconstruction that minimizes the 

CV error and therefore provides an optimal compromise between the model error and 

error arising from noise, i.e. a tradeoff between bias and variance. Computer simulations 

and experimental results are provided to demonstrate that a minimum exists in the CV 

error as a function of kernel size for several acquisition schemes. The effectiveness of 

CV-selected kernel support in image reconstruction is evaluated with experimental data.  

 

 

2.2 Methods 

2.2.1 Review of GRAPPA 

For simplicity, the following description assumes 2-dimensional sampling on a 

rectilinear grid although it can be readily generalized to the 3-dimensional case. In 

GRAPPA, data acquired in both phase (ky) and frequency (kx) encoding directions from 

all coils are interpolated to estimate the missing data for each coil, and images of the 

individual coils are reconstructed and combined, often using the square root of the sum of 

the squares, to derive the final image. Following the terminology used by others (11), we 

define a block to consist of one acquired line of data and the neighboring R-1 missing 

lines (R is the acceleration factor) along the accelerated direction (ky). The fitting process, 

as shown in Figure 2.1, can be represented mathematically by (11), 
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where S represents the k-space signal, (kx,ky) is the k-space coordinate, and ∆ky and ∆kx 

are the sampling intervals along ky and kx, respectively. In Eq. (1), j and l represents the 
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coil number, r (r ≤ R) is the number of ∆ky offset of the missing datum in a block, Na and 

Nb are the number of blocks before and after the current block to which the missing data 

belongs, Hl and Hr are the number of left and right neighboring columns, respectively, 

used in the reconstruction, L is the number of coils in the array, and Wj,r refers to the 

weights of the r-th line of coil j. 

 

                   Figure 2.1 GRAPPA fitting procedure 

 

The weights are obtained by solving the above equation in which the signals of 

the left side are replaced by ACS lines. The equation can be formulated as a least-squares 

problem in the matrix notation, 

Ax b= , [2.2] 

where b is the vector formed from vertical concatenation of the ACS points recorded by 

the individual coils, x is the vector of kernel weights, and matrix A consists of the vertical 

columns of the acquired data used to predict each ACS point with the kernel weights. For 

a given data set, the choice of kernel support dictates the tradeoff between the bias and 

noise (12). Therefore, a kernel support that minimizes reconstruction error, thereby 

resulting in an optimal tradeoff between SNR and artifact, is desired. 

Acquired data from multiple blocks (along ky), 
multiple columns (along kx), and from all coils are 
used to fit a single missing datum 

ky 

kx 

Coil 

Acquired line 
Missed line 
Line to be interpolated 

One 
block 
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2.2.2 Cross-validation in GRAPPA reconstruction 

In our implementation of CV for kernel support selection in GRAPPA, the 

available samples (ACS blocks) are divided into K disjoint partitions of approximately 

equal size (referred here as K-fold cross-validation), as illustrated in the example in 

Figure2.2 for an outer reduction factor (ORF) of 3. Note that in the example, one partition 

corresponds to one block although in general, depending on the value of K, a partition 

may consist of several blocks. Weights for each of the possible kernel supports are 

determined K times, each time using a different combination of K-1 partitions, and the 

prediction error is calculated, K times, by predicting the data for the partition left out 

(note that only the lines that would be omitted in a truly accelerated acquisition are 

predicted) and comparing with the corresponding measurement of the partition. The 

cross-validation error (εCV) for a given kernel support is simply the average of the K 

prediction errors given by 

2

1

1 1
( * )

j

K

CV j j j
j i Sj

b A x
K N

ε
= ∈

= −∑ ∑ , 
[2.3] 

where xj, bj, and Aj are the estimated weights, the testing data (i.e., the measured set of 

ACS lines left out), and the encoding matrix, respectively, at the jth step in the 

partitioning. Sj is the jth subset of the samples and Nj is the number of elements in that 

subset. The case where K is equal to the number of ACS blocks is known as the leave-

one-out cross-validation. For this work, leave-one-out cross-validation is used. For 

simplicity of illustrating the concepts of our method, we did not use other values of K in 

this work.  
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     Figure 2.2 Cross-validation re-sampling strategy used for kernel support selection 

 

 

2.2.3 Selection of kernel support 

For a given number of kernel support points, say i × j (i along ky and j along kx), 

there are a number of kernel shapes (configurations) to be considered. An exhaustive 

search of all possible number of support points and their corresponding configurations 

would require a large number of kernels to be examined and be computationally 

impractical. For example, with a matrix size of 256 × 256 (as the one used in Figure 2.7) 

accelerated with an ORF of 2, even the smallest kernel size (1 × 1) would have 128 × 256 

= 32768 configurations. Here we only examine rectangular kernels whose support is 

contiguous in the k-space, consisting of only acquired lines neighboring the missing 

datum (this restricted search has been termed k-space locality criterion (9)). In this case, 

either 1, 2 or 4 kernel support configurations were considered for each kernel size, 

depending the values of i and j; the multiple configurations arose because when i is an 

odd number there are two possible configurations along the phase-encoding direction, 

Acquired line 
Missed line 
ACS line 1 block 

1 2 K-1 K 

Available reference lines 

Coil i  

Partitioning 

The available ACS blocks are divided into K disjoint partitions of approximately equal size. 
In this example, an acquisition scheme with acceleration factor of 3 is illustrated. Weights for 
each of the possible kernel supports are determined K times, each time using a different 
combination of K-1 partitions, and the prediction error is calculated, K times, by predicting 
the data for the partition left out and comparing with the corresponding measurement of the 
partition. The cross-validation error (εCV) for a given kernel support is simply the average of 
the K prediction errors. 
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and when j is an even number there are two possible configurations along the readout 

direction. An example of kernel support consideration is illustrated in Figure 2.3 for a 2 × 

2 kernel and a 3 × 3 kernel. The examination process, as implemented in this study, starts 

from the minimum kernel size (1 × 1) and proceed iteratively to kernels that are 

incrementally expanded in each direction. The process stops when the maximum 

dimensions in each direction allowed by the data or user-defined limits are reached. In 

the cross-validation, εCV is computed for each of the kernels considered, and the kernel 

support that generates the overall minimum εCV is retained for GRAPPA reconstruction.  

 

 

      Figure 2.3 Configuration of the kernel supports to be examined by cross-validation 

 

 

ky 

kx 

Coil 

(i) (ii) 
(A) 

(B) 

(i) (ii) 

Examples for a kernel size of  (A) 2 ×××× 2 (ky ×××× kx) and (B) 3 ×××× 3 considering only kernels 
consisting of only acquired lines neighboring the missing datum. For each of these kernel 
sizes, two possible configurations ((i) and (ii)) exist. In all cases, the shaded circle is the point 
to be interpolated. In this example, an acquisition scheme with acceleration factor of 2 is 
illustrated. 
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2.2.4 Computer simulation  

Computer simulations were performed in Matlab (MathWorks, Natick, MA), 

using a standard Shepp-Logan phantom, to examine the cross-validation error as a 

function of kernel size for several acquisition schemes. Only kernel supports that were 

formed according to the k-space locality criterion were considered although it is expected 

that with each kernel size, the CV error may vary slightly also with the kernel support 

shape.  

 

An eight-element coil was simulated by means of an analytical Biot-Savart 

integration (Figure 2.4). Each coil element had a circular loop shape and the elements are 

placed 45˚ apart (with no gaps in between coils) on a cylinder of 320 mm diameter and 

300 mm in length. The 2D sensitivity map of each coil at the position z = 0 along the 

cylinder axis was applied to a 128 × 128 Shepp-Logan phantom of FOV 240 × 240 mm2 

to generate the full versions of k-space data sets, which were later downsampled to 

emulate the parallel imaging acquisition. Gaussian noise was added to the raw data (both 

the undersampled data and the ACS data). The variance of the noise (δ = 10-4) chosen 

corresponded to an average SNR of 100. Here the average SNR is defined as the ratio of 

the mean intensity of the entire Shepp-Logan phantom to the variance of the noise. 

Different sets of ACS lines taken at the center of the k-space were considered for the 

fitting. Two different reconstruction strategies were performed on the same simulated 

data set and their performances were compared. The first is a standard GRAPPA 

reconstruction that uses a 4 × 5 fixed kernel support, where kernel support elements are 
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formed by considering the k-space locality criterion. The second is a GRAPPA 

reconstruction using CV selected kernel support. 

 

    Figure 2.4 Sketch of the 8-element head array coil used to generate for simulation 

 

 

2.2.5 Data acquisition and reconstruction 

Two different sets of experimental data were acquired. Specifically we 

demonstrate our approach with 3 T anatomical brain data and 1.5 T dynamic cardiac 

imaging data. All data were collected with participants’ written informed consent in 

accordance with institutional review board policies. The anatomical brain experiments 

were performed on a 3T Siemens Tim™ Trio whole-body MR scanner (Siemens Medical 

Solutions, Erlangen, Germany) with a 12-channel head matrix coil for reception and a 

volume body coil used as the transmit coil. Axial brain scans were acquired from healthy 

adult human volunteers using a gradient-echo sequence (TR = 300 ms, TE = 4 ms, flip 

angle = 80˚, slice thickness = 5 mm, FOV = 256 mm, matrix = 256 × 256 × 12). The 

cardiac imaging data sets were acquired on a 1.5T Siemens Avanto with a 12-channel 

(A
) 

(B) 

x 
y 

z 

x 
y 

z 

 (A) indicating a brain mask within the array and (B) indicating the slicing procedure for axial 
imaging 
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cardiac matrix coil. Four-chamber view scans were acquired using a retrospectively gated 

segmented TrueFISP cine sequence in a single breath-hold (TR = 20.56 ms, TE = 1.09 

ms, flip angle = 72˚, slice thickness = 6 mm, FOV = 360 × 326.25 mm, matrix = 192 × 

144 × 12). In both experiments, non-accelerated multi-coil data were collected and later 

downsampled to emulate the parallel imaging acquisition procedure. Three parallel 

imaging data sets were synthesized with ORFs of 2, 3, and 4, respectively. Different 

numbers of ACS lines were considered for each ORF.  

 

Leave-one-out cross-validation was applied to undersampled data sets to identify 

their respective optimal kernel supports. GRAPPA was applied to each data set twice, 

once using its CV-derived optimal kernel support and another time with a common kernel 

support of 4 × 5. A quantitative assessment of the difference between the reconstructed 

images was performed by computing the reconstruction error defined by 

∑ −= N
n ref NnInI /)()(ε  where I represents the GRAPPA reconstructed image, Iref is 

the full-data reconstructed image, N is the total number of pixels, and n is the pixel index. 

As in standard GRAPPA, ACS lines were included in the reconstruction of the final 

image.  All algorithms were implemented in MATLAB (The Mathworks Inc., Natick 

MA, USA) on a Pentium 4 CPU 2.00 GHz computer with 1GB RAM. 

 

 

2.3 Results 

Figure 2.5 presents plots of cross-validation error of (A) Shepp-Logan phantom 

and (B) human brain data as a function of kernel size along the phase encoding direction 
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for ORF = 2, with 4, 8, and 12 ACS lines, respectively. The kernel size along the readout 

direction was fixed at one (similar to the original GRAPPA (8)) for simplicity as the 

purpose of the plot was to demonstrate the “U-shape” behavior of the CV error. A similar 

U-shape was seen when other kernel sizes along the readout direction were used. The 

plots in Figure 2.5A and Figure 2.5B have been scaled differently as their shapes are of 

more relevance here. In each figure, the three plots share the same trend: as the model 

complexity increases, the CV error decreases, reaches a minimum and then increases. 
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  Figure 2.5 Simulated and experimental plots of cross-validation errors  

 

 

(A) Shepp-Logan phantom and (B) human brain data vs. kernel size along the phase 
encoding for OR = 2. In all plots, squares indicate the use of 4 ACS lines, dark filled 
circles 8 ACS lines, and empty circles 12 ACS lines.  
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Phantom images reconstructed using GRAPPA with a fixed 4 × 5 kernel support 

and CV identified kernel support, with acceleration factors of 2 and 3 and a very limited 

number of ACS lines (2 for ORF = 2, and 6 for ORF =3) are presented in Figure 2.6B. 

The non-accelerated image is also shown in Figure 2.6A for comparison. The 

reconstructions are presented in the same manner as in Figure 2.7.  The reconstructed 

images are displayed with the same windowing setting for comparison. To the right of 

each reconstructed image, its absolute difference from the non-accelerated image is 

displayed, with a windowing setting that is much lower than that for the reconstructed 

image. On each difference image, the average absolute difference of a region with 

pronounced aliasing visible in the fixed kernel reconstruction (indicated by a rectangle) is 

given in an oval annotation. Fixed kernel GRAPPA reconstruction (left column) suffers 

from noticeable aliasing artifacts. Note that the CV identified kernel supports for ORF = 

2 and ORF = 3, [-1 1] × [-1 0 1] (along ky × along kx, relative to the k-space point to be 

interpolated) and [-1 1] × [-2 –1 0 1 2], respectively, are smaller than 4 × 5. The numbers 

in the brackets representing the kernel supports indicate, for each direction, the position 

of acquired point used in the interpolation relative to the missing datum under 

consideration. 

 

Figure 2.7 presents a series of human brain images: (A) the non-accelerated image 

and (B) GRAPPA reconstructed images using a fixed 4 × 5 kernel support and CV 

identified kernel support. GRAPPA reconstruction was applied for different acquisition 

schemes: (a) ORF = 2 with 2 ACS lines, (b) ORF = 3 with 6 ACS lines, and (c) ORF = 4 

with 9 ACS lines. The reconstructions are presented in the same manner as in Figure2.6. 
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The overall mean-squared difference between the non-accelerated and reconstructed 

images is shown in Table 1 and discussed later. The kernel supports identified were [-1 1] 

× [-1 0 1] (along ky × along kx), [-1 2] × [-2 –1 0 1 2], and  [-1 3] × [-2 –1 0 1 2] for ORF 

= 2, ORF = 3, and ORF = 4, respectively. 

 

 

       Figure 2.6 Reconstructed Shepp-Logan phantom images 

 

Reference image 
A 

B 

2×××× 

3×××× 

4××××5 kernel 

Difference image Reconstructed image 

CV kernel Choice 

Difference image Reconstructed image 

2.8 1.1 

3.6 1.7 

(A) non-accelerated image used as reference, and (B) GRAPPA reconstructed images using 
a 4 ×××× 5 kernel (left) and using kernel supports determined by CV (right). In (B), the two 
rows correspond to 2 parallel imaging settings (from the top to bottom): R = 2 with 3 
reference lines and R = 3 with 9 reference lines. To the right of each reconstructed image, its 
absolute difference with the non-accelerated image is shown. The average absolute 
difference in the ROI indicated by the rectangular box is shown in an oval inset in each 
difference image.  
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         Figure 2.7 Reconstructed brain data images 

 

Reference image 
A 

B 

2×××× 

3×××× 

4×××× 

4×5 kernel 

Difference image Reconstructed image 

CV kernel Choice 

Difference image Reconstructed image 

7.8 2.9 

9.7 

4.3 0.5 

(A) non-accelerated image used as reference, and (B) GRAPPA reconstructed images 
using a 4 ×××× 5 kernel (left) and using kernel supports determined by CV (right). In (B), the 
three rows correspond to 3 parallel imaging settings (from the top to bottom): ORF = 2 
with 2 ACS lines, ORF = 3 with 6 ACS lines, and ORF = 4 with 9 ACS lines. To the right 
of each reconstructed image, its absolute difference with the non-accelerated image is 
shown. On each difference image, the average pixel intensity of a region with pronounced 
aliasing visible in the fixed kernel reconstruction (indicated by a rectangle) is given in an 
oval annotation to illustrate the difference in ghosting between the two reconstructions. 
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        Figure 2.8 Reconstructed cardiac images 

 

 

(A) non-accelerated image used as reference, and (B) GRAPPA images reconstructed with 
a 4 ×××× 5 kernel support (left) and CV-identified kernel supports (right). From the top to 
bottom, the three rows in (B) correspond to 3 parallel image settings: ORF = 2 with 4 ACS 
lines, ORF = 3 with 8 ACS lines, and ORF = 4 with 12 ACS lines. To the right of each 
reconstructed image, its absolute difference with the non-accelerated image is shown. On 
each difference image, the average pixel intensity of a region with pronounced aliasing 
visible in the fixed kernel reconstruction (indicated by a rectangle) is given in an oval 
annotation to illustrate the difference in ghosting between the two reconstructions. 
 

Reference image A 

B 

2×××× 

3×××× 

4×××× 

1.8 0.7 

2.9 1.3 

6.1 3.4 

4××××5 kernel 

Difference image Reconstructed image 

CV kernel Choice 

Difference image Reconstructed image 



www.manaraa.com

 
 

59

GRAPPA reconstruction errors, as defined in the section “Methods”, were also 

computed for situations with more ACS lines and compared across the two reconstruction 

strategies for different acquisition schemes. These results are summarized in Table 1. 

Note that this is not the CVε  used to obtain the optimal kernel from the ACS data. 

 

Figure 2.8 presents a series of four-chamber view cardiac images of a single frame 

TrueFISP cine sequence reconstructed from the two strategies. The images are organized 

in the same manner as in Figure2.6.  

 

 

2.4 Discussion 

2.4.1 CV error and optimal kernel support 

In both Figure 2.5A and Figure 2.5B, all three cross-validation error plots share 

the same trend: as the model complexity increases, the CV error decreases, reaches a 

minimum and then increases. In other words, if the model is too simple, it does not 

capture the complexity of the data sufficiently. If the model is too complex, it becomes 

too sensitive to the errors in the data and over-fits the calibration data. The kernel support 

with minimum CV error corresponds to a suitable compromise for model complexity. 

This feature reflects the combined effect of model error and noise-related error in 

GRAPPA reconstruction. It should also be noted that the CV error decreases with 

increasing number of ACS lines, owing to increased knowledge regarding the coil 

sensitivity implicitly provided by the ACS lines. The behavior of the CV error seen here 

is in good agreement with that of the total error power discussed by Yeh et al. (9), who 
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measured the combined effect of kernel size truncation (through the k-space locality 

approximation) and noise amplification. In fact, since the testing data is the set of ACS 

lines, it can be stated that the CV error is the k-space version of the error power (9) 

calculated at the resolution represented by the ACS lines. In most cases, this would 

correspond to an error at low resolution. In cases where a full reference calibration scan is 

available, the CV error would not be limited to low-resolution. In general, CV operates 

on a dataset for which the calibration lines are already predefined. In cases where the 

ACS lines located at the low frequency do not capture the relationship needed for 

interpolation in the high frequency region (which may occur when the true sensitivity 

maps are not smooth enough ((10)), neither CV nor any other method that solely exploits 

these ACS lines would guarantee an artifact free reconstruction. 

 

In generating the plots shown in Figure 2.5, only kernel supports formed from 

acquired signals nearest to the fitted datum were considered. However, the observations 

regarding trading off model complexity with noise should be valid in general although it 

is expected that with each kernel size, the CV error may vary also with the kernel shape. 

For a fix 4×5 kernel size, we examined the CV error for different kernel shapes. With this 

exhaustive search (data not shown here), the best kernel support corresponded to the one 

that met the locality criterion. While this result cannot be generalized, it indicates that the 

k-space locality criterion is a good approximation. 
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Table 2-1 Reconstruction mean square error 

Brain image errors of GRAPPA reconstructions obtained: using a 4 × 5 support and the CV derived 
supports, respectively. 

ORF 
# of ACS 
lines 

Recon 
error (ε) 
(4×5 ) 

Recon 
error (ε) 
(CV 
kernel) 

CV identified 
kernel support 
 

ky 

kx 

Coil 

 

4 × 5 kernel support 
 

ky 

kx 

Coil 

 

2× 

2 1459 560 

 
 

[-1 1] × [-1 0 1] 

 

 

[-3 –1 1 3] × [-2 –1 0 1 2] 

6 468 431 

 
 

[-3 –1 1] × [-1 0 

1] 

12 426 412 

 
 

[-5 –3 –1 1] × [-1 

0 1] 

3× 

6 1066 569 

 

 

[-1 3] × [-2 –1 0 

1 2] 

 

 

 

[-4 –1 2 5] × [-2 –1 0 1 2] 

12 497 470 

 

 

[-4 –1 2] × [-2 –1 

0 1 2] 

16 477 459 

 

[-4 –1 2 5] × [-1 

0 1] 
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Table 2-1 Continued 

ORF 
# of ACS 
lines 

Recon 
error (ε) 
(4×5 ) 

Recon 
error (ε) 
(CV 
kernel) 

CV identified 
kernel support 
 

ky 

kx 

Coil 

 

4 × 5 kernel support 
 

ky 

kx 

Coil 

 

4× 

9 1345 616 

 

 

[-1 3] × [-2 –1 0 

1 2] 

 

 

[-5 –1 3 7] × [-2 –1 0 1 2] 

 

15 677 573 

 

 

[-5 –1 3] × [-3 –2 

–1 0 1 2 3] 

18 617 559 

 

 

[-1 3] × [-4 –3 –2 

–1 0 1 2 3 4] 

 Reconstructions for 2× outer reduction with 2 ACS lines, 3× outer reduction with 6 ACS lines, and 4x 
outer reduction with 9 ACS lines are shown in Figure2.7. 
 

2.4.2 Qualitative image comparisons 

The results of Figure 2.6 suggest with the simulated data used, the 4 × 5 kernel 

likely corresponds to a model that is too complex and therefore is unable to accurately 

predict the missing data. In contrast, the CV identified the proper kernel supports to use 

in the reconstruction and led to virtually artifact free images (right column of Figure 2.6) 
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Figure 2.7 illustrates the in vivo data reconstruction results for the two 

reconstruction strategies described above, with different acquisition schemes: 2, 6, and 9 

ACS lines for outer reduction factors of 2, 3, and 4, respectively. GRAPPA with the fixed 

kernel support (left column) led to images with significant aliasing artifacts (as indicated 

on both reconstructed images (arrows) and difference images), whereas the CV guided 

GRAPPA reconstruction produced images exhibiting minimal aliasing (right column). 

Residual aliasing artifacts in the CV images, which are inevitable given the limited 

number of ACS lines, can only be observed in the difference images and are significantly 

lower (reduced by 2-3 folds in the aliases) than those in the fixed kernel reconstruction.  

 

Similar observations can be made in Figure 2.8 which shows GRAPPA 

reconstructions, with a 4 × 5 fixed kernel support and CV identified kernel supports, of 

four-chamber view TrueFISP cardiac images. While the difference images for the fixed 

kernel show pronounced residual aliasing, the difference images for reconstructions with 

the CV kernels only exhibit background noise with no noticeable residual aliasing. This 

result again demonstrates the effectiveness of the CV method in identifying a proper 

kernel support for GRAPPA reconstruction for a given coil configuration, imaging 

orientation, and noise level in the data 

 

2.4.3 Implication on temporal resolution in cardiac imaging 

As the number of ACS lines increases, the difference between the images 

reconstructed by the fixed kernel support and CV identified kernel supports becomes less 
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visually apparent and needs to be assessed quantitatively. As illustrated in Table 1 for the 

case of brain data, the reconstruction error computed at different parallel imaging settings 

indicate that the CV identified kernel supports consistently outperforms the fixed 4×5 

kernel support. Interestingly, at the acceleration factor of 3, the CV method with 18 

reference lines produced better reconstruction than GRAPPA with a 4×5 kernel with 24 

reference lines. Similar behavior is also seen at the acceleration factor of 4. This 

observation suggests that in some cases the CV method produces comparable results as 

GRAPPA with a fixed window but with fewer number of ACS. It is also worth noting the 

large variation in the kernel supports identified by the CV. These kernel supports are not 

obvious and may not be intuitively identified. Similar results were obtained (not shown) 

for the cardiac data suggesting that GRAPPA can be calibrated with fewer number of 

ACS lines in cardiac imaging while preserving a high quality image even at high outer 

reduction factor. The ability to reduce the ACS lines needed is expected to be beneficial 

for cardiac imaging where temporal resolution is important. 

 

2.4.4 Computational considerations 

With a maximum search size set to 10 × 10, slightly larger than what is used in a 

previous paper (13), the CV algorithm adds an additional computational time of 13 ~ 29 

seconds to conventional GRAPPA reconstruction time. Using k-fold cross-validation 

(rather than the leave-one-out approach used here) can reduce this time. Also, the 

computational time for CV kernel support selection can be further shorted by distributed 

computing. In practice, if computation time is of concern, the user can choose a set of 

kernel supports to be examined by CV based on computational considerations. For 
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example, restricting the search to kernel size using the k-space locality criterion (17), for 

a fixed configuration, seemed to have produced better results compared to the use of 4 × 

5 kernel size of same configuration in all cases examined in this work. In general the 

cross-validation presented can be applied in conjunction with any GRAPPA 

reconstruction for improved performance.  

 

 

2.5 Conclusions 

In this work, cross-validation is introduced for optimal kernel support selection in 

GRAPPA reconstruction for a given accelerated data set. Cross-validation error was first 

demonstrated to vary with GRAPPA reconstruction kernel support. Subsequently, 

GRAPPA reconstructions of experimental data were performed with cross-validation 

selected kernels and a fixed 4×5 kernel. Comparison of results demonstrated that CV 

selection led to GRAPPA results with significantly reduced aliasing artifacts. The method 

is simple and applied in post-processing and can be used with GRAPPA routinely. 
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CHAPTER 3. A SIMPLE AND ROBUST METRIC FOR SELECTING 

OPTIMAL RECONSTRUCTION PARAMETERS IN K-SPACE 

BASED PARALLEL IMAGING 5 

 

 

 

In this chapter, a data consistency error (DCE) function, that exploits the shift 

invariance requirement of the kernel, is introduced to provide a goodness measure of k-

space based parallel MRI reconstruction algorithms. The DCE is derived from the 

difference between the acquired signals and their estimates obtained based on the 

interpolation of the estimated missing data. Simulation with experimental data shows a 

strong correspondence between the DCE and the mean square error in the reconstructed 

image, demonstrating its potential as a metric for comparing or choosing reconstructions. 

The DCE is then applied for automatically selecting the optimal kernel support for the 

generalized auto-calibrating partially parallel acquisition (GRAPPA) reconstruction and 

the optimal set of data frames for calibration in temporal GRAPPA reconstruction, 

leading to improved reconstructions compared to existing methods. The DCE is efficient 

to evaluate, robust for selecting reconstruction parameters, and suitable for characterizing 

and optimizing k-space based reconstruction in parallel imaging. 

 

                                                 
 
5 The work in this chapter has been adapted for publication as “Nana R, Hu X. A simple and Robust Metric 
for Selecting Optimal Reconstruction Parameters in k-space Based Parallel Imaging. Magn Reson Med. 
(Under Review). 
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3.1 Introduction 

Fundamentally, parallel MRI reconstruction in k-space assumes that only a limited 

number of acquired k-space data contribute to the interpolation of a missing datum (1). 

For Cartesian sampling methods, it is further assumed that the reconstruction kernel (or 

simply kernel) is shift invariant in the k-space. In general, the reconstruction performance 

strongly depends on the selection of settings (e.g. kernel support size, kernel support 

configuration, calibration dataset) that influence the kernel. For example, small kernels 

may be inadequate in capturing the complexity of the k-space interpolation while large 

kernels tend to be overly sensitive to errors in the data, both of which result in poor 

reconstruction (2,3). A good choice of kernel support size (or simply kernel size), which 

has been shown to depend on coil array configuration, noise level in the acquired data, 

imaging configuration, and calibration data, must provide a suitable compromise between 

the two extremes. Methods for automatically determining the optimal kernel parameters 

for a given parallel-acquired dataset have been intensively sought (3-5).  

 

The work of Qu et al. (4) presents an improved generalized auto-calibrating 

partially parallel acquisition (GRAPPA (6)) in which a rank-revealing QR factorization is 

used to select the most linearly independent columns of the encoding matrix formed from 

a large local k-space subset. The linear independence criterion here permits the selection 

of the kernel support configuration, given a fixed kernel size, which minimizes the noise 

amplification in GRAPPA weights estimation. However, their optimization criterion 

targets noise performance rather than reconstruction performance. 
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Samsonov (5) introduced a formalism in which k-space based parallel MRI 

reconstruction is framed as a way to approximate the inverse of the encoding matrix with 

a sparse matrix, with the error of this approximation used as a criterion for optimizing the 

kernel. In contrast to Qu’s approach (4), the optimization criterion targets the model 

accuracy. Although conditioning of the matrix inversion using truncated singular value 

decomposition (7) was able to reduce the noise related errors, it also reduced model 

accuracy. Unfortunately, the method described by Samsonov (5) did not provide a means 

to simultaneously minimize both the model error and noise related error.  

 

In a recently published approach, the selection of the kernel support for GRAPPA 

was posed as a model selection problem and cross-validation was used to select the 

optimal kernel support among a group of kernel support candidates (3). Unlike the 

previous methods, the cross-validation approach targets the total error, minimizing both 

the model error and noise related errors in GRAPPA. However, it can be computationally 

expensive, as K-fold cross-validation requires each kernel support candidate to be trained 

K times (K>1). Additionally, the performance of cross-validation may vary with the 

choice of K. For example, the bias of the true error rate estimator (the estimator accuracy) 

decreases whereas the variance of the true error rate estimator increases with increasing 

values of K. Selection of the optimal K for a given situation is still an open question (8). 

Furthermore, because the validation is performed only on reference k-space lines near the 

origin, the cross-validation approach focuses on errors in the low k-space. Therefore, a 
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computationally efficient, robust and balanced metric that facilitates the selection of 

reconstruction kernel settings which balances between artifacts and SNR is still desirable. 

 

In this work, we present a data consistency error (DCE) function that exploits the 

shift invariance requirement of the kernel to provide a simple measure of reconstruction 

error of k-space interpolation for Cartesian parallel imaging. This DCE is derived from 

the difference between the acquired signals and their estimates obtained from the 

interpolations of the estimated missing data. It is shown experimentally that this DCE can 

be used as an optimization criterion, which targets the total error, for selecting the kernel 

settings that balance between artifacts and SNR. Specifically, the DCE was used to 

automatically select the kernel support for GRAPPA and the set of calibrating frames for 

temporal GRAPPA (TGRAPPA (9)) that result to an optimal reconstruction. The 

performance of DCE-optimized reconstruction is compared to existing methods using 

experimental data with different amounts of the reference k-space data.  

  

 

3.2 Theory 

The development presented here is based on GRAPPA interpolation procedure and 

can be readily extended to other k-space based parallel MRI reconstruction algorithms. It 

is assumed that the data are undersampled along the phase encoding direction by a factor 

of R. In GRAPPA, a missing k-space point in a single coil is reconstructed by linearly 

combining data acquired in both phase (ky) and frequency (kx) encoding directions from 
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all coils. In a blockwise notation (Figure 3.1a), the GRAPPA reconstruction can be 

written as (10) 

1

N HL a r

j y y x j ,r l y y x x
l b N h Hb l

S ( k r k ,k ) W ( l ,b,h ) S ( k bR k ,k h k )
= =− =−

+ ∆ = × + ∆ + ∆∑ ∑ ∑  
[3.1] 

where Sj represents the k-space signal for the jth coil at the k-space coordinates (kx, ky), 

and ∆ky and ∆kx are the sampling intervals along ky and kx, respectively, r (r ≤ R) is the 

number of ∆ky offset of the missing datum in a block, Na and Nb are the number of blocks 

before and after the current block to which the missing data belongs, Hl and Hr are the 

number of left and right neighboring columns, respectively, used in the reconstruction, L 

is the number of coils in the array, and Wj,r refers to the weights of the r-th line of coil j. 

A block consists of one acquired line of data and the neighboring R-1 missing lines. The 

reconstruction weights are obtained by solving equation [1] in which the left side is filled 

by auto-calibrating data.  

 

 

   Figure 3.1 Shift invariance property of the GRAPPA kernel 

 

 

ky 

kx 

Coil 

(a) 

Acquired line 
Missed line 
Line to be filled 

(b) 

Acquired line 
Filled line 
Line to be predicted 

 (a) A missed line is interpolated from acquired lines from all coils; (b) an 
acquired line should be predictable from the estimated missing lines. In this 
illustration, R = 3 and a kernel of 2 ×××× 3 is used. 
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Since GRAPPA kernel should ideally be shift invariant in the k-space, the 

estimated missing lines should be capable of predicting the acquired lines as depicted in 

Figure 3.1b, allowing one to write 

1

N HL a r

j y x j ,r l y y y x x
l b N h Hb l

S ( k ,k ) W ( l ,b,h ) S ( k bR k k ,k h k )
= =− =−

= × + ∆ + ∆ + ∆∑ ∑ ∑  
[3.2] 

It is reasonable to hypothesize that the optimal set of weights minimizes the difference 

between the original acquired signals and their estimates. Therefore, a reconstruction 

parameter setting m (e.g. kernel size, kernel support configuration, calibration dataset) of 

the kernel results in an optimal reconstruction if it minimizes the data consistency error 

function given by 

2
Ã

A

A ( m )
DCE( m )

K

−
=  

[3.3] 

where .  is the Euclidean norm, A is a vector containing the original data, Ã is the vector 

consisting of estimated data obtained using the parameter m, and KA is the size of A. DCE 

takes into account both fitting and prediction errors and therefore considers the total error 

(model error plus noise related errors) during kernel settings optimization. 

 

The practical implementation steps for determining DCE of a given setting is as 

follows: 

Step 1. Derive the GRAPPA weights using the calibration information, 

Step 2. Fill in the missing data of all coils according to Eq. [1], 

Step 3. Predict the acquired data using the same GRAPPA weights using (Eq. [2]), 

Step 4. Compute DCE using Eq. [3]. 
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3.3 Methods 

The effectiveness of the proposed data consistency error was experimentally 

evaluated on GRAPPA and TGRAPPA reconstructions. The DCE was applied to 

automatically select the kernel setting that resulted in an optimal reconstruction. In both 

applications, the selection process started by forming the collection of kernel settings to 

be examined by DCE followed by the evaluation of DCE of each setting and the 

identification of the setting with the minimum DCE. At the same time, GRAPPA or 

TGRAPPA reconstruction was also carried out for each kernel setting examined by DCE 

in order to compute the reconstruction mean square error (MSE) for comparison. Here 

MSE is defined by 
2N

n refMSE I( n ) I ( n ) / N= −∑  where I represents the GRAPPA or 

TGRAPPA reconstructed image, Iref is the full-data reconstructed image, N is the total 

number of pixels, and n is the pixel index.  

 

GRAPPA reconstruction using DCE-identified kernel setting was compared to 

those using a 4 × 5 × 12 kernel, the sparse-optimized kernel (5), and the cross-validation-

identified kernel (3).  The first, second, and third numbers of the kernel notation represent 

the kernel dimensions along ky, kx, and coil, respectively. The coil dimension is assumed 

constant for cross-validation and DCE selected kernels and will be omitted in the kernel 

representation hereafter for simplicity. As the sparse approximation method given by 

Samsonov (5) did not specify a means for selecting the stopping criterion in the 

optimization process, the target k-space subset size was chosen to match the number of 
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points contained in the DCE-identified kernel in order to make a fair comparison between 

the two methods. In each case, we verified that the sparse approximation error as a 

function of k-space subset size decreased down to the desire size (as described in 

Samsonov’s paper (5)). Additionally the impact of applying Tikhonov regularization (11) 

on the 4 × 5 kernel was investigated and compared to the DCE-optimized reconstruction. 

L-curve method (11) was used for optimal regularization parameter selection. The 

optimal regularization parameter (the corner of the L-curve) was selected as the one 

where the product of abscissa and ordinate is a minimum (12). Experimental data were 

collected with participants’ written informed consent in accordance with institutional 

review board policies. All algorithms were implemented in MATLAB (The Mathworks 

Inc., Natick MA, USA) on a Quad Core Intel Xeon CPU 2.4 GHz computer with 8GB 

RAM. 

 

3.3.1 Application to GRAPPA  

The aspect of the kernel to select here was the kernel support. The set of kernel 

supports to be examined by DCE was formed by following the procedure described 

previously (3) which considers only rectangular kernels designed according to the k-

space locality criterion (2). The kernel support that minimized DCE was taken as the 

optimal one. 

 

Axial brain imaging was performed on a 3T Siemens Tim™ Trio whole-body MR 

scanner (Siemens Medical Solutions, Erlangen, Germany) equipped with a 12-channel 

head matrix coil. Fully sampled scans were acquired from healthy adult human 
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volunteers using a gradient-echo sequence (TR = 300 ms, TE = 4 ms, flip angle = 80˚, 

slice thickness = 5 mm, FOV = 256 mm, matrix = 256 × 256 × 12) and later 

downsampled to emulate the parallel imaging acquisition procedure. Parallel imaging 

datasets were generated with outer reduction factors (ORF) of 2, 3, and 4, respectively, 

and different numbers of ACS lines. 

 

3.3.2 Application to TGRAPPA 

In TGRAPPA (9), adjacent undersampled time frames are used as the calibration 

data in the GRAPPA reconstruction process of a given time frame. Since different time 

frames may carry different sensitivity information in real time cardiac imaging, the 

number of calibrating frames should be, in principle as minimal as possible (i.e. equals 

the acceleration factor) to minimize the effect of sensitivity mismatch and temporal 

blurring. In the original TGRAPPA implementation, more than the minimum number is 

used to improve the SNR with averaging of calibration data. In the present work, DCE 

was applied to select the number of calibrating frames and the kernel support in order to 

achieve an optimal TGRAPPA reconstruction. Since the procedure for the selection of 

kernel support is the same as described in the previous subsection, only the calibrating 

frames selection is described here. 

 

It was assumed (as per original implementation of TGRAPPA) that the optimal 

set is comprised of consecutive frames nearest the frame to be reconstructed. For the 

reconstruction of each frame, DCE was calculated for calibration data sets formed by its 

neighboring frames, starting from the one with the minimum number of frames needed 
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for calibration (i.e., the parallel imaging acceleration factor including the frame under 

consideration) to a preset maximum. The minimum calibration data sets for R = 2, 3, and 

4, respectively are shown in Figure 3.2a and their possible increments are illustrated in 

Figure 3.2b. This process was repeated for all kernel supports to be examined. The 

combination of kernel support and number of calibrating frames that minimized DCE was 

taken as the optimal kernel parameter set.  

 

 

   Figure 3.2 Formation of the set of frames to be examined by DCE 

 

 

The initial set (m1) is formed with the minimum number of adjacent undersampled frames 
necessary to form a complete dataset for calibration, which equals R (including the frame under 
consideration). (a) Possible configurations of m1 assuming that only frames nearest to the frame 
to be reconstructed contribute to the calibration process. (b) Formation of other sets mi by 
addition of one frame at the time up to the maximum number allowed by the dataset or user-
defined number. 
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Real-time non-gated, non-breath-hold cardiac imaging was performed on a 1.5T 

Siemens Avanto with a 15-channel cardiac matrix coil using a trueFISP sequence. Fully 

sampled short-axis view cardiac data were acquired at a rate of 7 fps on healthy subjects 

(TR = 2.29 ms, TE = 1.15 ms, flip angle = 70˚, slice thickness = 8 mm, FOV = 360 × 

264.38 mm, matrix = 256 × 56 × 15) and later downsampled in a time-interleaved phase-

encoding scheme as described by Breuer et al. (9). Three parallel MRI datasets were 

synthesized with acceleration factors (R) 2, 3, and 4, respectively. In all TGRAPPA 

reconstructions performed here, the full extent of the k-space calibration data was used to 

derive the GRAPPA weights. 

 

 

3.4 Results 

  The dependence of DCE on the GRAPPA kernel size along the phase encoding 

direction and the number of ACS lines for three axial brain datasets downsampled with 

ORF = 2 (top-left), ORF = 3 (top-center), and ORF = 4 (top-right), respectively, is 

presented in Figure 3.3a. For all plots in Figure 3.3, the kernel size along the readout 

direction was set to five. The asymmetric “U-shape” and location of the minimum along 

the kernel size axis of each DCE plot virtually match those of the corresponding MSE 

plot (Figure 3.3b) obtained under the same conditions. The observed trends were 

consistent for other kernel sizes along the readout direction. 
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         Figure 3.3 Dependence of DCE and MSE on the kernel size 

 

 

Figure 3.4 presents GRAPPA reconstructed images using (a) a 4 × 5 kernel, (b) 

the 4 × 5 kernel with regularization, (c) the sparse optimized subset, and (d) the DCE-

identified kernel for 9 and 24 of ACS lines at ORF = 4 (Note that 24 ACS lines are a little 

more than that used in Refs. (4,10)). The cross-validation identified kernels for these 
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Plots of (a) DCE and (b) MSE of human brain data vs. kernel size along ky (when the 
kernel size along kx is fixed to 5) for different ORFs as indicated at the top of each figure. 
The legends specify the number of ACS lines used in each case. 
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datasets were the same as those selected by DCE and therefore produced the same 

images. The DCE-identified kernel supports were 2 × 7 (along ky × along kx) and 3 × 11 

for 9 ACS lines and 24 ACS lines, respectively. A graphical representation of these 

kernels is given in Figure 3.4. The sparse-selected kernel support configurations varied in 

all three dimensions (along ky, kx, and coil) and could not be represented graphically in a 

readily visualized form. The reconstruction with DCE-identified kernel exhibits reduced 

artifacts and noise level compared to other methods as indicated by the difference images. 

When considerably large numbers of ACS lines were used, the images generated by the 

different methods are comparable but, as described below, exhibit slightly different 

amounts of error. Table 3.11 lists the error of these reconstructions for situations with 

different ACS lines. In all cases, the DCE-selected kernel resulted in a smaller 

reconstruction error than other methods. The DCE-selected kernel size (CV-selected 

kernel as well) increases with increasing number of ACS lines. The DCE-kernel size 

reaches a ceiling, due to the maximum number of ACS lines that can be used for a given 

k-space data matrix size. For example, at R = 4, the optimal kernel identified by DCE for 

147 ACS lines (16 × 26) is the same as that for 196 ACS lines (full ACS lines) since the 

maximum number of ACS lines that can be used for a 16 × 26 kernel size at R = 4 with a 

256 × 256 data matrix is 147.   

 

At R = 4, the DCE-selected kernel support (16 × 26) for maximum ACS lines was 

used to reconstruct images with various sets of fewer ACS lines and the results are 

presented in Fig 3.5. It is evident that the DCE-identified kernel support for a large 
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number of ACS lines leads to significant reconstruction noise when applied to data with 

fewer ACS lines. 

 

 

   Figure 3.4 Comparison between reconstruction methods on brain data 
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(a) 4 ×××× 5 kernel, (b) 4 ×××× 5 kernel with Tikhonov regularization, (c) sparse-optimized k-space 
subset, and (d) DCE-identified kernel support. To the right of each reconstructed image, its 
absolute difference with the non-accelerated image (not shown) is shown. An ORF = 4 and two 
different number of ACS lines (9 and 45) as indicated on the top of the two main columns were 
used. The kernel diagrams used by the reconstructions are shown and the arrows are used to 
associate each kernel to the corresponding reconstruction. The configurations of the k-space 
subsets used by the sparse method are complex since it varies along the 3 dimensions (kx, ky, and 
coil) and are not represented. The k-space subset size has been chosen to match the size of the 
DCE-identified kernel. 
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       Figure 3.5 Influence of the ACS lines number on the optimal kernel 

 

 

The dependence of DCE on three TGRAPPA kernel variables (kernel size along 

ky, kernel size along kx, and number of calibrating frames) obtained from the real-time 

cardiac dataset downsampled at R = 3 is shown in Figure 3.6a. In each plot, two variables 

were set to their optimal values while the other was varied. For frames 2, 43, and 75, the 

optimal parameters were {4, 21, 5}, {3, 23, 8}, and {4, 17, 3}, respectively. The 
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Reconstruction performance of the DCE-identified kernel when full ACS lines 
are used versus different lower number of ACS lines: (a) Reconstructed images 
and corresponding absolute difference with the non-accelerated image, and (b) 
mean square error. 
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parameters in the bracket denote the optimal kernel size along ky, the optimal kernel size 

along kx, and the optimal number of calibrating frames, respectively. There is a virtually 

identical match in the asymmetric “U-shape” and location of the minimum between each 

DCE plot and its corresponding MSE plot (Figure 3.6b) obtained under the same 

conditions. 

 

Because the comparison between the different kernel optimization methods was 

already made above for GRAPPA, the DCE-optimized TGRAPPA was only compared to 

the original TGRAPPA which uses 6 (for R = 2), 9 (for R = 3), or 12 (for R = 4) 

calibrating frames and a 4 × 5 kernel. Figure 3.7 presents short-axis view cardiac images 

reconstructed (R = 3) using: (b) a 4 × 5 kernel support and nine adjacent calibrating 

frames as described in the original TGRAPPA (9), and (c) the DCE-identified numbers of 

calibrating frames and the DCE-identified kernel supports. The reconstructed images are 

displayed with the same windowing setting for comparison. Below each reconstructed 

image, its absolute difference from the full-data derived image (a) is displayed, with a 

windowing setting that is much lower than that for the reconstructed image. A 

quantitative comparison of the two TGRAPPA reconstructions in terms of MSE is shown 

in Figure 3.8 for three different acquisition schemes: (a) R = 2, (b) R = 3, and (c) R = 4, 

computed for all frames. All plots have the same scale. 
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     Figure 3.6 Dependence of DCE and MSE on the number of calibrating frames 

 

 

3.5 Discussion 

The shift invariance property of the reconstruction kernel in k-space-based 

Cartesian parallel imaging has been essential for the development of other parallel MRI 

reconstruction algorithms such as GRAPPA operator formalism (13) and iterative 

a 

b 

Frame #43 
Frame #75 

Frame #2 

# of adjacent frames 

D
C

E
 

0.6

0.8

1.0

1 6 11 16 21 26

Frame #43 
Frame #75 

Frame #2 

Kernel size along ky 
D

C
E

 

0.5

0.9

1.3

1 2 3 4 5 6

Frame #43 
Frame #75 

Frame #2 

Kernel size along kx 

D
C

E
 

0

3

6

9

1 5 9 13

Frame #43 
Frame #75 

Frame #2 

# of adjacent frames 

M
S

E
 

1.2

1.5

1.8

1 6 11 16 21 26

Frame #43 
Frame #75 

Frame #2 

Kernel size along ky 

M
S

E
 

1.2

1.6

2

1 2 3 4 5 6

Frame #43 
Frame #75 

Frame #2 

Kernel size along kx 

M
S

E
 

1

2

3

4

1 5 9 13

Plots of (a) DCE and (b) MSE of dynamic cardiac data accelerated at R = 3 vs. number of 
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GRAPPA (14), both of which have found several applications (15-17). In this work, a 

different exploitation of this shift invariance property is demonstrated with the purpose of 

optimizing and characterizing current reconstructions in parallel imaging. 

 

 

 

   Figure 3.7 Comparison between reconstructions on dynamic cardiac data  
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(a) 

(a) Nonaccelerated images used as reference, and TGRAPPA reconstructed images using (b) 
original parameters, (c) DCE-identified parameters. The absolute difference of each 
reconstructed image with the non-accelerated image is shown right below the reconstructed 
image. 
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The mean square error as defined in this study has been widely used to assess the 

performance of parallel MRI reconstruction algorithms but requires the full-data 

reconstructed image (3,5,18,19). The plots in Figs. 3.3 and 3.6 show a strong 

correspondence between our proposed data consistency error and MSE, suggesting that 

the DCE is a suitable candidate for characterizing errors in k-space-based parallel MRI 

reconstruction algorithms. Unlike MSE, DCE does not need the full-data set. This unique 

feature makes DCE an effective tool for optimizing reconstruction in parallel imaging. 

The good correspondence between DCE and MSE also indicates that DCE targets the 

total error in the kernel optimization process. 

 

The shapes of DCE and MSE plots as a function of kernel size of Figure 3.3 and 

Figure 3.6a demonstrate the conflicting demand between reconstruction model accuracy 

and stability in GRAPPA reconstruction and are consistent with the results reported 

previously (2,3). GRAPPA reconstruction using the kernel support that generated the 

minimum DCE value shows a better tradeoff between artifact and SNR than 

reconstruction using other methods (Figure 3.4, Table 3.1). The 4 × 5 kernel was chosen 

as a representative kernel used for GRAPPA. The sparse approximation method targets 

the GRAPPA model error rather than the total error and therefore results in a larger 

reconstruction error as compared to DCE method for all the data examined in this study. 

The sparse optimized k-space subsets of sizes 168 and 396, respectively, used for the 

reconstructions in Figure 3.4 were determined in 137 s and 349 s, respectively, using the 

initial larger k-space subset of 7 ×18 × 12 (similar to that is used by Samsonov (5) with 



www.manaraa.com

 
 

87

the exception of the number of coils). As a comparison, the corresponding DCE-

identified kernels were identified in 9 s and 11 s, respectively, with a maximum search 

size of 7 × 18. Although these computation times should not be directly compared as the 

DCE method explicitly utilizes the locality criterion (2) and does not vary the kernel 

support with coils whereas the sparse method allows the kernel to vary along three 

dimensions and uses the locality criterion only when defining the search space, they are 

indicative of the computational efficiency of these methods. Note that the DCE-identified 

kernel support led to smaller reconstruction errors on all the data examined in this study, 

suggesting that the locality criterion is a good approximation. 

 

For image space based reconstructions such as the sensitivity encoding (SENSE 

(20)), which has the appeal of a theoretical exact solution to the parallel imaging 

problem, the role played by regularization is explicit since it can considerably mitigate 

the issue of noise amplification during matrix inversion (21). In k-space based parallel 

imaging reconstructions which are theoretically approximate (22), the conditioning of the 

reconstruction is largely implicit in the approximation made in the reconstruction. 

Regularization generally reduces noise at the cost of increased artifacts ((5,19)). This is 

confirmed by Figure 3.4b which shows a net noise reduction but with pronounced 

artifacts as compared to the images without regularization (Figure 3.4a). It is evident that 

the 4 × 5 kernel is too large for the case where 9 ACS lines are used (Fig .3.4b, first 

reconstructed image in the row), but the result suggests that regularization cannot 

overcome this limitation whereas DCE can identify the kernel that mitigate the problem. 

On the other hand, the comparable quality of the regularized and non-regularized 
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reconstructions with a 4 × 5 kernel for situations with abundant ACS lines (Table 3.1) 

indicates the limited benefits of regularization in k-space based parallel imaging (23). 

 

In some cases with large number of ACS lines, the cross-validation kernel choice 

deviates from that of DCE (Table 1). This is likely due to the increase of the variance of 

the true error rate estimator when leave-one-out cross-validation (as used throughout this 

study) is used in situations with large numbers of samples (8). Unfortunately, the optimal 

K-fold for a given dataset is yet to be determined. 

 

One difference between the method described here and the cross-validation 

approach we reported earlier (3) is that the former examines data consistency with all 

sampled k-space data and the latter only looks at the data consistency for ACS lines 

which are usually centered in the k-space. In other words, cross-validation generally 

focuses on low-resolution reconstruction error as dictated by the ACS lines residing near 

the k-space center, whereas DCE examines the reconstruction error at all acquired 

resolutions.  This difference resulted in a small improvement in the DCE based 

reconstruction in some cases. 

 

A K-fold cross-validation (K>1), as described in (3), requires a computation time 

of approximately K-1 times that of DCE search to produce results that are at most 

comparable. For example, with a maximum search size set to 10 × 10, the kernel size 

searching algorithm using leave-on-out cross-validation on the anatomical data shown in 

Figure 3.5 adds an additional time of 13-29 sec to conventional GRAPPA reconstruction 
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whereas the same search using DCE adds only 6-8 sec. This time difference increases 

with the number of ACS lines and the maximum kernel size to be examined. The 

computation time of DCE can be further improved by selectively choosing the set of 

acquired data needed for the determination of DCE.  

 

 

           Figure 3.8 Quantitative comparison between TGRAPPA reconstructions 
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The DCE-selected kernel size was shown to increase with increasing number of 

ACS lines (Table 3.1). On the other hand, significant reconstruction noise occurred when 

the DCE-selected kernel support for maximum ACS lines was used to reconstruct images 

with fewer ACS lines. This suggests that the set of kernel supports to be examined by 

DCE may be adjusted according to the number of ACS lines in order to improve the 

efficiency of the search. 

 

At the acceleration factor of 3, the DCE method with 18 ACS lines produced 

better reconstruction than GRAPPA with a 4 × 5 kernel with 36 ACS lines. Similar 

behavior is also seen at the acceleration factor of 4. This observation suggests that 

GRAPPA can be performed with a fewer number of ACS lines while preserving 

reconstruction quality even at high outer reduction factor. The ability to reduce the ACS 

lines needed is expected to be beneficial for application requiring internal calibrating 

lines and where temporal resolution is important. 

 

A limitation of the searching strategy adopted here is the assumptions of locality 

criterion (2) in forming the set of kernel candidates as described by Nana et al. (3) and the 

fixed configuration of the kernel along the coil dimension. Although all possible kernel 

configurations could be examined with DCE in principle, it is impractical due to 

computational burden. Nonetheless, the DCE-identified kernel shows a better or at least 

equal performance compared to other methods for all data tested in this study, suggesting 

that these assumptions are reasonable. 
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DCE and MSE plots in Figure 3.6 (left column) demonstrate the influence of the 

number of adjacent calibrating frames on TGRAPPA reconstruction performance. In 

most cases, the plots exhibit an asymmetric “U-shape” demonstrating a conflicting 

demand between reconstruction accuracy and stability as a result of including different 

number frames in the calibration data set. The increase in the number of calibrating 

frames reduces the effect of noise (as a result of averaging) during the GRAPPA weights 

estimation but at the same time increases the error due to sensitivity mismatch between 

different calibrating frames. The number of calibrating frames that generated the 

minimum DCE corresponds to a suitable compromise between these two errors. The 

variation of the location of the minimum of DCE plot for different frames indicates that 

the use of a fixed number of calibrating frames for all frames (as it is the case for original 

TGRAPPA) is unlikely optimal. The variation of the optimal number of calibrating 

frames with the frame number may be explained by respiration-induced chest wall 

excursions. The images reconstructed using the DCE-identified kernel support and the 

DCE-identified number of calibrating frames exhibit a significant reduction in noise and 

artifacts compared to those using the original TGRAPPA reconstruction parameters as 

indicated by the difference images of Figure 3.7. A quantitative assessment of the 

performances of these three strategies using MSE, shown in Figure 3.8, clearly 

demonstrates that the reconstruction using the DCE-identified kernel parameters 

outperforms the original TGRAPPA. The considerable difference between the two 

reconstructions is likely due to fact that 1) the kernel support was also optimized in the 

DCE optimized reconstruction and 2) our experimental dataset was acquired at a 
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relatively low rate (7 frames per second), making frame to frame variations more 

substantial and possible errors due to using more frames in the reconstruction larger.    

 

Table 3-1 Comparison between reconstruction mean square error 

Brain image errors of GRAPPA reconstructions obtained using: 4 × 5 support, 4 × 5 support 
with Tikhonov regularization, sparse-optimized k-space subset, CV-identified kernel, and the 
DCE-derived kernel supports, respectively. 

ORF 
# of 
ACS 
lines 

Recon 
error 
(4×5) 

Recon error 
(4×5 with 

regularization) 

Recon error 
(SPARSE 

kernel) 

Recon error 
(CV kernel) 

Recon error 
(DCE 

kernel) 

CV-
identified 

kernel 
size 

DCE-
identified 

kernel 
size 

2 

2 1762 1026 808 690 690 2×3 2×3 

12 433 428 417 405 405 2×6 2×6 

24 395 394 383 362 362 4×7 4×7 

FULL 356 353 322 329 313 20×23 20×30 

3 

6 1109 937 546 502 502 2×5 2×5 

18 489 473 445 433 433 2×10 2×10 

36 440 438 428 419 414 4×9 4×12 

FULL 422 421 367 351 340 16×21 16×30 

4 

9 1501 1134 657 572 572 2×7 2×7 

24 649 583 521 483 483 3×11 3×11 

48 534 531 455 443 423 4×11 4×13 

FULL 503 501 386 370 356 16×19 16×26 

 

 

The data consistency error introduced here is appropriate for characterizing and 

optimizing all k-space based parallel MRI reconstruction algorithms that assume the 

kernel to be partially or totally shift invariant in k-space. For example, DCE procedure 

can be applied to non-Cartesian reconstruction algorithms that divide the k-space into 
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sectors and assume shift-invariant sector-specific reconstruction kernels (24-28). In this 

case, the kernel parameters need to be optimized sector-wise and the sum of the resultant 

DCE values may be used. 

 

 

 

3.6 Conclusions 

In this paper, we have introduced a new data consistency error (DCE) that can be used for 

validating, characterizing, and optimizing k-space-based reconstruction in parallel 

imaging. DCE was applied to automatically select the optimal kernel support for 

GRAPPA reconstruction and the optimal set of frames for calibration process in 

TGARPPA reconstruction. Compared to existing kernel optimization methods, the result 

is an optimized tradeoff between artifacts and noise in the reconstructed images. The new 

data consistency error is easy to evaluate, robust for selecting reconstruction parameters, 

and can be applied to all k-space based parallel MRI reconstruction algorithms that 

assume the kernel to be partially or totally shift invariant in k-space. 
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CHAPTER 4. PASSIVE TRACKING OF THE CALIBRATION 

INFORMATION CHANGE USING DATA CONSISTENCY 

ERROR TO IMPROVE RECONSTRUCTION EFFICIENCY 

AND ACCURACY IN DYNAMIC PARALLEL IMAGING 6 

 

 

 

In parallel dynamic imaging such as TGRAPPA [1], multiple adjacent time frames 

are merged to form the calibration dataset for the reconstruction of a given frame. In the 

TGRAPPA implementation, the reconstruction weights are determined for every time 

frame, which may result in long reconstruction times. In applications such as free 

breathing cardiac and abdominal imaging, the respiration induced coil sensitivity change 

is cyclic in time suggesting that multiple frames along the time course may have 

approximately the same calibration information. This chapter presents a simple passive 

approach that utilizes the data consistency error (DCE) introduced in chapter 3 to provide 

a goodness measure of the frame-to-frame coil sensitivity information change in parallel 

dynamic imaging. This tracking information is subsequently used to identify the frames 

sharing calibration dataset and avoiding using inconsistent calibrating frames, leading to 

an efficient and accurate reconstruction.  The method is demonstrated using in vivo 

cardiac imaging data. 

                                                 
 
6 A manuscript has been prepared for the work in this chapter for publication in Magn Med Reson as “Nana 
R, Hu X. Automatic Passive Tracking of the Frame-to-Frame Calibration Information Change To Improve 
Reconstruction Efficiency in Dynamic Parallel Imaging”. 
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4.1 Introduction 

Imaging a moving object with MRI often poses non-trivial challenges, as high 

acquisition speeds may be required to resolve or freeze its temporal variations. Parallel 

imaging (1) has been proposed to increase the imaging speed by acquiring just a fraction 

of needed data. Parallel imaging reconstructs the image from the reduced dataset by 

relying on prior knowledge about the array of receiver coil sensitivities. The coil 

sensitivity information is generally obtained through an additional reference experiment, 

thereby degrading the efficiency of the parallel imaging experiment. In dynamic 

application such as free breathing cardiac imaging with flexible cardiac matrix coils, the 

coil sensitivities change in time due to respiration induced chest wall movement. This 

poses an additional challenge to parallel imaging since sensitivity mismatch may be 

present between the reference data and the data of each time frame.  

 

The generalized auto-calibrating partially parallel acquisition (2,3) has been 

recently extended to dynamic experiments that are performed with an interleaved 

acquisition scheme (4,5) such that the sensitivity information necessary for reconstruction 

is directly obtained from the actual accelerated data. This so called temporal GRAPPA 

(6) permits the realization of the full image acceleration since several adjacent 

undersampled time frames can be merged to form the full calibration dataset for the 

GRAPPA reconstruction of a given frame. In this original implementation of TGRAPPA, 

the reconstruction weights are determined for every time frame, which may result in long 
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total reconstruction times. Since respiration induced coil motion generally occurs more 

slowly as compared to the frame acquisition rate, it has been suggested that the 

reconstruction coefficients may be updated much less frequently in order to improve the 

overall reconstruction time without significant degradation of the image quality (6). 

However, finding how often the weights need to be updated may not be a simple task as 

this may vary with acquisition conditions. In principle, the knowledge of the respiratory 

induced chest displacement, generally cyclic, may help improve both the calibration and 

the total reconstruction time since many frames along the time course may carry 

approximately the same sensitivity information. 

 

This chapter presents a method that utilizes a recently introduced data consistency 

error (DCE) metric (7), which provide a simple measure of reconstruction error of k-

space interpolation for Cartesian parallel imaging, to provide a consistency measure of 

the frame-to-frame calibration information in parallel dynamic imaging. This tracking 

information is subsequently used to identify the frames sharing calibration dataset and 

avoiding using inconsistent calibrating frames, leading to an efficient and accurate 

reconstruction.  The method is demonstrated using in vivo cardiac imaging data. 

   

 

4.2 Methods 

4.2.1 Review of DCE  

DCE was recently introduced to provide a simple measure of reconstruction error 

of k-space interpolation for Cartesian parallel imaging (7). It has been proven useful to 
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select parameters for an optimal reconstruction. It is defined as the mean square 

difference between the acquired data and their estimates obtained by interpolation of the 

estimated missing data. The missing data and the predicted acquired data are interpolated 

using the same kernel (shift invariance property of the kernel). The implementation steps 

for computing GRAPPA-type DCE are as follows: (I) Derive the GRAPPA weights using 

the calibration information; (II) Fill in the missing lines of all coils; (III) Predict the 

acquired lines from the filled missing lines using the same GRAPPA weights; (IV) 

Compute the mean square difference between the acquired lines and their estimates. In 

this study, the calibration dataset is the varying information used to track the coil 

sensitivity information relative changes in time using DCE. 

 

4.2.2 Segmenting the time frames based on their calibration information 

In our implementation of the frame-to-frame calibration information tracking 

procedure, the set of interleave-undersampled frames is divided into blocks starting from 

a designated reference frame and expanding along the time course as indicated in Fig. 

4.1. A block consists of R consecutive frames with distinct sampling patterns. DCE 

values of the reference frame are calculated for each block used as the calibration dataset. 

We assume that each DCE value provides a simple measure of the sensitivity mismatch 

that exists between the reference frame and the frames of a given block and therefore 

reflects the coil sensitivity changes. During the calculation of DCE, the mean square error 

between the images reconstructed from the under-sampled and fully sampled reference 

frame, respectively, is output for comparison. Assuming the coil sensitivity changes 

smoothly in time and that the acquisition rate is constant, the DCE values reflecting the 
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sensitivity mismatch between a given frame and the reference frame is determined by 

linear interpolation of the block-based DCE values of the reference frame. The relative 

change of DCE values within which the frames are assumed to share the same calibration 

information is chosen empirically to be the average of the differences between the DCE 

values of two consecutive frames in the time course. The time frames sharing the 

calibration information are merged to derive the reconstruction weights which are 

subsequently used to reconstruct each of them. 

 

4.2.3 Data acquisition and reconstruction 

Non-gated free breathing cardiac experiments were performed on a 1.5T Siemens 

Avanto with a 15-channel cardiac matrix coil using a trueFISP sequence. Fully sampled 

short-axis view cardiac data were acquired at a rate of 7.80 fps on healthy subjects (TR = 

2.29 ms, TE = 1.15 ms, flip angle = 70˚, slice thickness = 8 mm, FOV = 360 × 264.38 

mm, matrix = 256 × 56 × 15) and later downsampled in a time-interleaved phase-

encoding (PE) scheme as described in (6). Additionally, truly accelerated outflow track 

cardiac view data were acquired at rates 10.73 fps (R = 2), 16.09 fps (R = 3), and 21.45 

fps (R = 4). The common acquisition parameters for the accelerated data were: TR = 2.39 

ms, TE = 1.02 ms, flip angle = 71, slice thickness = 6 mm, FOV = 350 x 263 mm, and 

matrix size = 176 × 78 × 15. 
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        Figure 4.1 Formation of the blocks of frames to be examined by DCE 

 

 

The sensitivity tracking procedure described previously was applied to the 

accelerated cardiac datasets to identify the frames that share approximately the same 

calibration information. For the offline-accelerated dataset, the reconstruction mean 

square error (MSE) was output during the DCE computation for comparison. Here MSE 

is defined by 
2N

n refMSE I( n ) I ( n ) / N= −∑  where I represents the GRAPPA 

(a) 

Reference frame 

Block of 2 complementarily sampled frames 

Complete composite frame 

Reference frame 

 Block of 3 complementarily sampled frames 

Complete composite frame 

(b) 

 Block of 4 complementarily sampled frames 

Complete composite frame 

Reference frame 

(c) 

(a) R = 2; (b) R = 3; (c) R = 4. R-1 complimentary sampled frames neighboring the 
reference frame are selected to form the reference block of R consecutive frames. 
Depending the position of the reference frame, this process is repeated by expanding along 
the time course in both directions. Other configurations of the block are possible (position 
of the reference frame within the reference block). 
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reconstructed image, Iref is the full-data reconstructed image, N is the total number of 

pixels, and n is the pixel index. The optimized TGRAPPA reconstruction was compared 

to the original TGRAPPA. In all TGRAPPA reconstructions, the full extent of the k-

space calibration data was used to derive the GRAPPA weights. All algorithms were 

implemented in MATLAB (The Mathworks Inc., Natick MA, USA) on a Pentium 4 CPU 

2.00 GHz computer with 1GB RAM. 

 

 

4.3 Results 

Figures 2a, 2c, and 2e present the dependence of DCE values on the block of 

frames generated according to Figure 4.1 for cardiac datasets offline downsampled at R = 

2, R = 3, and R = 4 respectively. The plots were generated using four different kernel 

supports corresponding to 2 × 5, 2 × 9, 4 × 5 and 4 × 9 as indicated by the legend. The 

shape and locations of the peaks and valleys along the block of frames axis of each DCE 

plot virtually match those of the corresponding MSE plot (Figs. 3b, 3d, and 3f) obtained 

under the same conditions. 

 

Application of our frame segmentation procedure on the DCE plot of any of the 

kernel support results to 14 groups of frames for R = 2, 9 groups of frames for R = 3, and 

7 groups of frames for R = 4. Figure 4.3 presents short axis view cardiac images 

reconstructed using (b) the original and the (c) optimized TGRAPPA. These frame 

images were picked from the same group but are located at different phases of the DCE 

plots. In all cases, a 4 × 5 kernel was used. The reconstructed images are displayed with 
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the same windowing setting for comparison. Below each reconstructed image, its 

absolute difference from the full-data reconstructed image (a) is displayed, with a 

windowing setting that is much lower than that for the reconstructed image. A 

quantitative comparison between the two reconstructions is illustrated by the MSE plots 

of Figure 4.4 generated for all frames and for different acquisition schemes: (a) R = 2, (b) 

R = 3, and (c) R = 4. 

 

The dependence of DCE on the block of frames for a truly accelerated data is 

shown in Figure 4.5 for three acceleration factors and for four kernel supports. Examples 

of images reconstructed by the two strategies are illustrated in Figure 4.6. Below each 

reconstructed image, a magnified copy of the image is shown to demonstrate the 

significant reduction in the background artifacts from undersampling when the optimized 

reconstruction is used. The segmentation of the frames using our tracking strategy lead to 

13, 11, and 14 groups for acceleration factor of 2, 3, and 4 respectively for all four kernel 

supports used. The total computation times of these two strategies are summarized in 

table 4.1. 
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     Figure 4.2 Dependence of DCE and MSE on the block of frames 
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Plots of DCE (a, c, and e) and MSE (b, d, and f) computed on the offline downsampled 
dynamic dataset as a function of block of frames. The three rows correspond to 3 parallel 
MRI settings, R = 2 (top), R = 3 (center), and R = 4 (bottom). Four different kernel supports 
corresponding to 2 ×××× 5, 2 ×××× 9, 4 ×××× 5 and 4 ×××× 9 were used as indicated by the legend. 
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   Figure 4.3 Comparison between reconstructed images 

 

 

 

4.4 Discussion 

The plots of Figs. 2 show a strong correspondence between DCE and MSE, a 

similarity consistent throughout the data used in this study and also consistent with the 

observations reported in ref. (7). These plots exhibit a cyclic pattern, indicative of 

respiration-induced changes. Additionally, the numbers of cycles (≈ 2.25) on all plots of 

Figure 4.2 are identical, indicating that our time frames arrangement strategy of the 
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(a) Non-accelerated images used as reference, (b) original, and (c) optimized 
TGRAPPA reconstructed images (R = 3). The absolute difference of each 
reconstructed image with the non-accelerated image is shown right below the 
reconstructed image. 
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offline downsampled datasets does not affect the number of respiration cycles with which 

the original fully sampled data were acquired. Furthermore, there is a strong similarity 

between the shapes of the plots generated using different kernel supports as indicated by 

the plots of Figs. 2 and 5, suggesting that our tracking strategy is independent of the 

kernel support. All these findings corroborate with our assumption that the DCE values of 

the reference frame reflect the sensitivity mismatches that exist between the reference 

frame and the block of frames.  

 

The images reconstructed using the optimized TGRAPPA show a noticeable 

quality improvement over those reconstructed using the original TGRAPPA as indicated 

by the difference images of Figure 4.3 and the zoomed regions of reconstructed images of 

Figure 4.6. This performance is further confirmed by the results of Figure 4.4 which 

compares the MSE of the two strategies on the entire dynamic datasets. It is important to 

mention the overall low quality reconstructed images from the offline downsampled 

datasets as compared to that of the truly accelerated datasets for both reconstruction 

strategies. The smoothness of DCE plots of the truly accelerated datasets as compared to 

those downsampled offline goes along with this observation. This is understandable 

because downsampling dynamic datasets offline does not change the sensitivity 

mismatches that already exist between fully acquired frames (and eventually between 

lines of a frame) but, instead, can only complicate this sensitivity mismatch when the 

undersampled data are merged (even with a minimal number of frames) to derive the 

calibration information. The offline datasets were used just for simulation to confirm the 

correspondence between DCE and MSE in the present context and to provide a 

quantitative comparison of the image qualities obtained by the two strategies. 
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               Figure 4.4 Quantitative comparison between TGRAPPA reconstructions 

 

 

The optimized TGRAPPA results in considerably reduced total reconstruction 

times compared to the original TGRAPPA as indicated in table 1. In the original 

TGRAPPA, more time is spent in the reconstruction weights estimation which normally 

increases with kernel size, acceleration factor, and number of ACS lines. This justifies the 

increase of the difference in computational time at higher acceleration factors. The 

optimized TGRAPPA total reconstruction time can be considerably reduced by restricting 
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the computation of DCE in the center part of k-space (as opposed to the entire k-space as 

done in study) or/and by increasing the range of DCE values within which the frames are 

assumed to share the same sensitivity information, provided that this increase does not 

adversely affect the quality of the images. The computational time difference between 

these two strategies is expected to increase with increasing number of frames. 

 

The DCE range within which the frames are assumed to share the same sensitivity 

information has been chosen empirically to be the average of the differences between the 

DCE values two consecutive frames the time course. This choice prioritizes blocks of 

frames located at different phases along the time course over neighbor consecutive 

blocks. This choice also takes into account the variability that may exist in the respiration 

rate and is therefore adaptable to a given dynamic dataset. Other ranges may be 

envisioned. For example, choosing the range to be 5% of the dynamic range of all DCE 

values seemed to produce comparable results (not shown) for all the data analyzed in this 

study. However, this fixed percentage may be inappropriate for datasets acquired under 

other conditions. 
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         Figure 4.5 Dependence of DCE on block of frames on the truly-
accelerated outflow track cardiac view dataset 

 

   

  Table 4-1 Comparison between the total reconstruction times (in sec)  
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R = 3 
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128 frames 

Original TGRAPPA 312 461 514 

Optimized TGRAPPA 213 267 243 
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frames for R = 4, due to our proposed block configuration) as the reference frame did not 

significantly affect the results presented in this study. However, it should also be noted 

that once the reference frame is chosen there may be many possible block configurations 

(different positions possible of the reference frame in the reference block). Our proposed 

block configuration follows a locality criterion, which suggests that the sensitivity 

mismatch between two frames within the same respiration phase diminishes with 

decreasing distance (in time) between the two frames, i.e. selected frames that make up 

the reference block should be as close as possible to the reference frame. This is 

understandable because the frame acquisition rate is generally constant and coil motion 

caused by respiration varies smoothly. Nonetheless, we have investigated all other 

possible configurations and did not see any advantage over the proposed configuration. 

 

The number of frames carrying approximately the same sensitivity information 

increases with the number of respiratory cycles covered during data acquisition, 

potentially leading to better reconstruction as a result of improved SNR of the calibration 

dataset. However it is important to point out that if a dynamic dataset is acquired during 

less than half of a respiration cycle, the calibration dataset may only contain the strict 

minimum number of frames (equal to the acceleration factor), and in this case there is no 

guarantee that our propose method can produce better result than the original TGRAPPA. 

In such a rare situation, the original TGRAPPA reconstruction is advised. Additionally, 

for real-time on-the-fly image reconstruction, our method would require a delay of at 

least a respiration cycle. If online reconstruction is the main interest (i.e. no need to 

improve the image quality), then our proposed sensitivity tracking strategy can be 
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coupled with the original TGRAPPA just to determine how often the reconstruction 

weights need to be updated. In this case the knowledge of the preset threshold DCE 

value, under which the reconstruction weights do not need to be updated, is required. 

This threshold could be a percentage change of the DCE value of the block from which 

the new set of reconstruction weights is derived. 

 

 

   Figure 4.6 Reconstruction results of two different outflow track view frames (R = 3) 
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(a) original  and (b) optimized TGRAPPA reconstructed images. Below each reconstructed image, 
a magnified copy of the image is shown to demonstrate the significant reduction in the 
background artifacts (indicated by the arrows) from undersampling. 
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An alternative to our blockwise arrangement of the dynamic dataset, which only 

considers R consecutive frames along the time course, is to form the set of blocks without 

any restriction by combining the reference frame with all possible combinations of R-1 

complimentary frames that exist within the dynamic dataset. The implementation of this 

strategy did not show any noticeable image quality improvement on our proposed method 

but added a considerable computational time penalty. This is understandable because the 

respiration occurs much more slowly than the actual frame acquisition rate.  

 

 

4.5 Conclusions 

We have introduced and demonstrated a strategy that can be used to passively 

extract a goodness measure of the frame-to-frame relative sensitivity information change 

in order to improve reconstruction efficiency of TGRAPPA in free breathing cardiac 

imaging. Compared to the original TGRAPPA reconstruction, the proposed method 

results to a considerably reduced total reconstruction time while improving or at least 

maintaining the image quality. 
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CHAPTER 5. NON-CARTESIAN PARALLEL IMAGE RECONSTRUCTION 

WITH DECONVOLUTION OF UNDER-SAMPLED GRIDDING 

(DUG) IN K-SPACE7 

 

 

 

In this chapter, a new algorithm is introduced to further improvements in 

computation times and reconstruction efficiency for parallel imaging using non-Cartseian 

trajectories.  The new method, non-Cartesian parallel image reconstruction with 

deconvolution of under-sampled gridding (DUG), operates on gridded k-space and 

exploits the energy distribution during the gridding process to segment the gridded data 

for an efficient k-space interpolation. Compared to existing methods, DUG results in an 

improved and faster reconstruction. The effectiveness of the method is demonstrated with 

in vivo spiral and radial data. 

 

 

5.1 Introduction 

Parallel imaging is currently an integral part of magnetic resonance imaging owing 

to its ability to increase the acquisition speed while reducing imaging artifacts and the 

specific absorption rate (SAR). To date, most parallel imaging approaches are based on 
                                                 
 
7 A manuscript has been prepared for the work in this chapter for publication in Magn Reson Med as “Nana 
R, Zhao T, Hu X. An Efficient and Reliable GRAPPA Reconstruction method for non-Cartesian Parallel 
Imaging”. Preliminary results have been presented as “Zhao T, Nana R, Hu X. An efficient and General 
GRAPPA method for non-Cartesian Parallel Imaging. 15th Annual Meeting ISMRM; 2007; Berlin, 
Germany. P 337.” TZ was responsible for implementing the main idea while RN was responsible for 
developing the theory and simulation that support the idea, optimizing the GRAPPA reconstruction 
weights, and applying the strategy to radial trajectory. 
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sampling on Cartesian grid in the k-space and the sampling reduction is applied mostly 

along the phase-encoding direction(s) (1). Depending on the applications, non-Cartesian 

trajectories may be advantageous and desired (2-7). For parallel imaging, non-Cartesian 

trajectory has the added advantage in that the reduction in spatial encoding can be 

achieved in multiple directions naturally. However, parallel imaging with non-Cartesian 

trajectories is somewhat hampered by the difficulty in reconstruction. 

 

Parallel image reconstruction with Cartesian sampling is relatively simple, owing to 

its shift-invariance property in either the image space or the k-space. With non-Cartesian 

trajectory, parallel image reconstruction becomes more difficult as the shift invariance is 

no longer present. In the image domain, aliasing for non-Cartesian k-space trajectories is 

highly complex, as every pixel can contain a contribution from all other pixels in the 

entire field of view (FOV). While direct inversion to simultaneously solve for the true 

pixel intensities is possible in principle, it is computationally impractical.  

 

Iterative solutions of the matrix inversion have been proposed (8,9), but these 

methods tend to be somewhat time consuming. Several k-space approaches, which do not 

require iteration, have also been proposed. With these methods, missing k-space data 

points are estimated through interpolation of the acquired data. Most of these are based 

on either PARS (9) or GRAPPA (10). The main difference between the two is that the 

former explicitly utilizes sensitivity maps in deriving the reconstruction weights while the 

latter uses k-space calibration data. In PARS, the reconstruction kernel can be dependent 

on the k-space location in general and can be applied to arbitrary k-space sampling. An 



www.manaraa.com

 
 

117

extension of this approach in which a reduced number of kernels are used is possible 

(11).  

 

In GRAPPA, the reconstruction kernels derived with calibration measurements 

implicitly account for coil-sensitivity information. In the Cartesian case, shift-invariance 

in the k-space is utilized such that a single globally invariant kernel can be used to 

synthesize missing signals with a given shift in the k-space relative to the acquired 

signals. In the case of non-Cartesian k-space trajectories (e.g. radial and spiral 

trajectories), the kernels are no longer shift invariant, and rigorous GRAPPA 

reconstruction requires different reconstruction kernels for each missing datum because 

an invariant kernel is not applicable. Consequently, the reconstruction process can be 

very time consuming, and the use of GRAPPA is limited in non-Cartesian sampling. To 

overcome this difficulty, several authors have proposed dividing the k-space into sectors 

and assuming the kernel within each sector to be approximately the same (12-14). This 

segmentation of the k-space exploits the radial symmetry inherent to spiral and radial 

trajectories. In these methods, the missing data are first GRAPPA synthesized followed 

by a gridding (15,16) process that interpolates the non-Cartesian data onto a rectilinear 

grid. Transforming the accelerated data onto Cartesian grid following with GRAPPA 

interpolation has also been proposed (17,18).  

 

A successful non-GRAPPA, non-PARS, and non-iterative based k-space algorithm 

has been recently introduced which formulates the reconstruction problem as a system of 

sparse linear equations in k-space from which the solution is obtained by computing a 
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sparse approximation inverse matrix. The method suffers from a considerable 

computational load (even heavier than that of iterative SENSE (8)) for a single image 

reconstruction but may be useful for applications that require repetitive measurement 

such as functional MRI (19) and diffusion tensor imaging (20,21) since the results of the 

first reconstruction can be applied to reconstruct subsequent images in a relatively shorter 

time.  

 

Despite the successes of the existing algorithms, no commercial scanner currently 

supports reconstruction of undersampled non-Cartesian k-space data. This suggests that it 

remains a challenge to efficiently reconstruct an image from undersampled non-Cartesian 

k-space data. This chapter presents an efficient and relaible reconstruction strategy for 

parallel imaging with a strong potential of online reconstruction. The method operates on 

gridded k-space and exploits the energy contribution of each acquired signal during the 

gridding process to identify each group of gridded k-space data that can be synthesized 

with the same reconstruction kernel. As it turns out, the number of kernels per coil 

necessary to synthesize the gridded data can be reduced to the acceleration factor, leading 

to a computational effort (excluding the calculation of the gridding table) comparable to 

normal Cartesian GRAPPA. The basis of the gridded k-space data segmentation for 

efficient reconstruction is first provided through simulation. Then the effectiveness of the 

new method, non-Cartesian parallel image reconstruction with deconvolution of under-

sampled gridding (DUG), is demonstrated on in vivo data and compared to segmented 

GRAPPA (12,14). 
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5.2 Theory 

Conventional convolution gridding methods (16) assume that the non-Cartesian 

data fulfill the Nyquist criterion at all k-space locations. Therefore, applying gridding on 

undersampled non-Cartesian data may add gridding errors and thereby complicate the 

parallel MRI reconstruction problem. In this section, we first demonstrate that it is 

possible to apply a weighted average interpolation described by a kernel on data that has 

been gridded using conventional gridding approach to generate an artifact free image.  

Because our demonstration builds upon the PARS(9) formulation, a brief review of 

PARS reconstruction is provided first. 

 

5.2.1 Review of PARS reconstruction 

The l th receiver coil of L, with sensitivity hl(r), l = 1, …, L, collects signal from an 

object f(r) over a volume of interest (VOI) at the k-space position ku that can be 

represented by 

⋅= ∫ uik r
l u lVOI

s ( k ) e h ( r ) f ( r )dr [5.1] 

In this article, it assumed that the signal is sampled on non-Cartesian grids described by 

ku.  In PARS, an un-acquired datum of a given coil can be synthesized by linearly 

combining acquired signals from all coil data and the final image can be obtained by root 

sum of squares of individual coil images. This procedure can be mathematically 

represented by 

,

( )
, ' '

' 1

( ) ( ) ( )
∈Π =

= ∑ ∑
c D

L
l

l c u l c l u
u l

s k w k s k , 
[5.2] 
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where kc represents the k-space position of the Cartesian sample to be determined that 

provides a predefined FOV and resolution, respectively. Πc,D is the set of k-space 

samples, within the radius D, participating in the synthesis of kc, i.e. 

, { : }Π = − ≤c R c un k k D  and .  is the Euclidean norm. '( )− ∆l c us k k  is the l ’th datum 

acquired at a relative shift ∆ku = kc - ku from kc, 
( )
, '
l

u lw (kc) are reconstruction weights for the 

synthesis of the un-acquired point kc of the l th receiver. The weighting coefficients are 

calculated by performing a least-squares fit that satisfies the following equation: 

,

( )( )
, ' '

' 1

( ) ( ) ( )c n

c Z

L
i k kl

u l c l l
u l

w k e h r h r−∆

∈Π =

≈∑ ∑  
[5.3] 

 

These weights can also be derived directly in k-space by fitting the acquired k-

space data to auto-calibration signals (ACS) which can be simply the densely sampled k-

space center available for many trajectories such as radial and variable density spirals or 

an external calibration scan (11). This is accomplished by solving the equation  

s EwACS
l l=  [5.4] 

where sACS is a column vector of calibration signal values obtained by the l th coil, wl is 

the column vector of weights necessary to reconstruct the point kc, and E is the encoding 

matrix whose elements are defined by 

,( , )[ ] ( )E x n l l x ns k k= − ∆  [5.5] 

where xЄΩ, Ω being the ensemble of all k-space positions contoured by the calibration 

region, i.e.  the Fourier domain of the l th coil sensitivity map. Note that the sub-indexes x, 

(n, l) emphasize that the matrix E has dimensions length of Ω × (length of Πc,D × L). 
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5.2.2 Post-gridding k-space interpolation 

Eq.[5.5] suggests that construction of the encoding matrix E amounts to re-

sampling sl(k), which may be efficiently implemented using gridding (11). This suggests 

that the PARS operator 
,

( )
, '

' 1

( )
= ∈Π
∑ ∑

c D

L
l

u l c
l u

w k , which transforms non-Cartesian accelerated 

data onto aliasing free full Cartesian data, can be represented by a product of a mono-

channel gridding operator 
, '

,
∈Π
∑

x D

x m
m

g , which transforms a coil non-Cartesian accelerated 

data onto aliased Cartesian data, and a multi-channel weighted average operator  

, "

, '
' 1

( )
= ∈Π
∑ ∑

c D

L
l
n l c

l n

w k , which synthesizes a gridded datum by linearly combining gridded data 

from all coils. This can represented mathematically by 

, , " , '

( )
, ' , ' ,

' 1 ' 1

( ) ( )
= ∈Π = ∈Π ∈Π

≈ ⋅∑ ∑ ∑ ∑ ∑
c D c D x D

L L
l l

u l c n l c x m
l u l n m

w k w k g  
[5.6] 

where D’  and D”  are the gridding and the weighted average interpolation kernel widths, 

respectively. Therefore, Eq. [5.2] can be rewritten as 

, '

( )
, ' ' '

' 1

( ) ( ) ( )
∈Π =

= − ∆∑ ∑
c D

L
l G

l c u l c l c c
u l

s k w k s k k  
[5.7] 

where kc’ describes the Cartesian positions of the gridded data, ' '( )G
l c cs k k− ∆ is the l ’th coil 

gridded signal at a relative shift ∆kc’  = kc - kc’ from kc. The formulation in Eq. [5.7] 

requires all coil data to be gridded onto Cartesian grid before the weighted average 

interpolation. 
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The implication of Eq.[5.7] is that a weighted average interpolation can be applied 

to remove aliasing from the gridded data while recovering the errors induced by applying 

gridding on data that violate Nyquist condition.  Note that in Eq. [5.7], the interpolation 

weights are still location dependent and calibrating the reconstruction for each k-space 

sample would be very time consuming. A segmentation strategy for efficient 

interpolation is therefore necessary.   

 

 

            Figure 5.1 Analysis procedure of the energy distribution during gridding 

 

 

5.2.3 Segmenting the gridded k-space data for efficient reconstruction 

In a conventional gridding process, the non-Cartesian data are convolved with a 

window such as the Kaiser-Bessel function window (15). Segmenting the data gridded 

from an under-sampled non-Cartesian trajectory for efficient reconstruction requires a 

detail analysis of the energy distribution during the gridding process. A simulation study 

(a) A unit signal located at a source point (ο) is sinc interpolated onto the spiral grids 
(indicated by the red arrows). Then the interpolated signals are gridded onto several 
target Cartesian grid points (×) including the source point (indicated by the blue 
arrows).  Repeating this process for all Cartesian grid points permit to generate 
maps which describe these grid points contribute to each other. (b) For each gridded 
point, a 5×5 neighborhood is examined. 

 

(a) (b) 
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was conducted to capture the dependence of the gridded k-space data points from under-

sampled non-Cartesian data on original rectilinear k-space data. To this end, an impulse 

located at a given Cartesian point (denoted as source point) was first sinc interpolated to 

generate the non-Cartesian trajectory data and the non-Cartesian trajectory data, with 

missing segments zero-filled, were gridded to the Cartesian grids (target points) using a 

Kaiser-Bessel function window (e.g. Figure 5.1a). Repeating this process for every 

Cartesian point mapped out their contributions to each gridded point. Assuming this to be 

local, the contributions to each gridded point from a local neighborhood of 5×5 (Figure 

5.1b) were examined and are shown in Figure 5.2. When there is no under-sampling, the 

contribution maps are uniform in the k-space (see Fig. 5.2a). When the spiral trajectory is 

under-sampled (Fig. 5.2b and 5.2c), the contribution maps exhibits a pattern similar to the 

sampling trajectory, with the grid points closer to acquired segments receiving more 

contribution. The cross-sectional profiles displayed on the top of each figure indicate that 

these contributions can be represented by steps, depending on the gridded point’s 

distance from the sampled trajectory, with the number of steps equal to the reduction 

factor R. Dividing each map by the central map leads to relative contribution maps that 

are virtually uniform (Figs. 5.3a and 5.3b), suggesting that the grid points corresponding 

to the same step in the profile can be deconvolved with the same kernel. Similar results 

were obtained with radial trajectory (Figure 5.4). In other words, if gridding is applied to 

under-sampled spiral and radial trajectories, R (acceleration factor) interpolation kernels 

(DUG kernels) are sufficient to deconvolve the aliased gridded k-space data for proper 

reconstruction. 
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       Figure 5.2 Absolute contribution maps for spiral trajectory 

 

 

Simulation results of the contribution maps for 4-segment spiral with matrix size 64 × 64 
accelerated at rate: (a) 1, (b) 2, and (c) 4. The maps are displayed in a configuration that 
reflects the contributions to each gridded point from a local neighborhood of 5 × 5. The 
maps of (b) and (c) are weighted by the spiral trajectory. On the top of these maps, 
representative cross-section profiles of the maps are shown.  

(a) 

(b) (c) 

0 20 40 60
0  

1

0 20 40 60
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        Figure 5.3 Relative contribution maps for spiral trajectory 

 

 

 
        Figure 5.4 Simulation results for radial trajectory 

 

 

Relative contribution maps for (a) R = 2 and (b) R = 4 obtained by dividing each map of 
Figure 5.2 ((b) and (c)) by its corresponding center map, respectively. 

Simulation results for a radial trajectory with mat rix size 64 × 64 accelerated at rate 4:  
(a) absolute contribution map (b) relative contribution map. The maps are displayed in a 
configuration that reflects the contributions to each gridded point from a local 
neighborhood of 5 × 5. 

(a)  (b) 

(b) (c) 
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5.2.4 Determining the reconstruction weights 

DUG weights are determined using a fraction of the data acquired without under-

sampling which can be done before, after, or during the actual accelerated acquisition. 

Two copies of this calibration data are made. For each coil, spiral segments or radial 

projections in the first copy that would be normally omitted in an accelerated experiment 

are zero-filled, and the zero-filled data are subsequently gridded onto Cartesian grid, 

referred to as aliased grid, using Kaiser-Bessel function. At the same time, the second 

copy is also gridded to form the reference grid. This process is summarized in Figure 5.5. 

The gridded datasets are then segmented according to the procedure described above. We 

assume that each data point in the reference gridded k-space for each coil can be 

calculated by a simple weighted average (defined by a DUG kernel) of the corresponding 

point and its neighbors in the aliased k-space of all the coils as shown in Figure5.5. This 

can be mathematically represented by 

, '

( )
, ', ', ' '

' ' 1

( ) ( )
c R

L
ref grid l aliased grid
l m c c l m l c

c l

s k w s k− −

∈Π =

= ∑ ∑ . 
[5.8] 

The system of linear equations formed by considering Eq. [5.8] for all samples of each 

group can be solved to determine the DUG reconstruction weights of the group. The set 

of optimized weighting coefficients of each group is obtained by applying the cross-

validation as described in (22) to determine the kernel support that balance between 

artifacts and SNR.  
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     Figure 5.5 DUG weights calculation procedure  

 

 

 

5.3 Methods 

5.3.1 k-space trajectory 

Our proposed method was demonstrated on spiral and radial trajectories. The 

spiral trajectory was a multi-interleaf Archimedian spiral (Figure 5.6a), described by the 

following general equations (23): 

i( )j
jk ( t ) e

+= ωτ φαλτ ,     
1

2j

j ...J

j / J

=  
 =  φ π  

[5.9] 

Aliased gridded k- space Reference gridded k-space 

Zero-filling 
& Gridding 

 GRAPPA 
 Fitting 

Fully sampled calibration data 

gridding 

Both the fully sampled calibration data and its under-sampled copy (with zero 
filling) are gridded, clustered, and reordered to generate the reference and aliased 
hybrid spaces, respectively. By fitting the data in the aliased hybrid space (selected 
by the kernel support) to the target data in the reference hybrid space, the weights 
can be determined. 
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were τ = [0, 1] and a function of time and is determined according to the slew-rate and 

amplitude constraints as described in (Ref. 10), ω = 2πq with q equals the number of 

windings in k-space per interleaf, λ is a constant determined by the desired matrix size 

and field of view (λ = M/(2× FOV, M: matrix size), α > 1 defines the amount of 

oversampling near the origin of the k-space wanted. 

 

 

        Figure 5.6 Non-Cartesian trajectories used 

 

 

The radial trajectory (Figure 5.6b) used in this work is described by Eq. [12], 

m( ) ( ) ji
jk t k t e

φ= Γ ,  
1...

2 /j

j J

j J

= 
 φ = π 

 
[5.10] 

( )Γ t is a ramp function from –1 to 1, and km is a constant determined by the desired 

matrix size and FOV (km = M/(2× FOV)). The number of radial views J is given by J 

=ceil(2πM). The projections are azimuthally separated by phase offset jφ . 

∆kmax 

(b) 

∆kmax 

(a) 

(a) 4-interleaved spiral and (b) radial trajectories accelerated at rate R = 4. The Filled 
line represents k-space data points acquired, and dash lines represent k-space point 
omitted. ∆kmax denotes the maximum separation of the k-space points and is R times the 
Nyquist required ∆k. 
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5.3.2 Data acquisition 

Spiral axial brain data and radial short axis view cardiac data were acquired on 

Siemens Tim Trio™ 3.0T system with a 12-channel head coil and on a 1.5T Siemens 

Avanto with a 12-channel cardiac matrix, respectively. In both cases, fully sampled data 

were acquired twice. The first measurement served as an external reference scan to derive 

the DUG kernels. The second measurement was downsampled to simulate parallel 

imaging with acceleration factors of 2 and 4 for spiral, 4 and 6 for radial, respectively. 

The spiral trajectory was implemented in the IDEA pulse programming environment 

(Siemens Medical Solutions, Malvern, PA, USA) and consisted of four-segment with 

matrix size: 128 ×128, FOV: 256 × 256 mm2, slice thickness: 5.0 mm. The spiral specific 

acquisitions acquisition parameters were, TR/TE: 2000/30 ms. Maximum slew rate and 

gradient amplitude were 150 T/m/s and 23 mT/m, respectively. The radial data were 

acquired using True FISP sequence with: matrix size: 128 ×128; FOV = 280 × 280 mm2, 

TR/TE = 196.11/1.57 ms, flip angle 70˚, slice thickness = 5 mm, 208 radial views 

acquired in 16 segments to meet the Nyquist criterion of π/2× readout points. 

 

5.3.3 Image reconstruction 

Gridding using the Kaiser-Bessel function window was applied to both reference 

and undersampled data of the spiral and radial datasets followed by the segmentation of 

the gridded data as described above. Unless otherwise specified, the gridding window 

width of 6 was used. Next, cross-validation was applied to the reference dataset to 

determine the optimal kernel support of circular shape. Next, each datum in the aliased 
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gridded k-space of each coil was calculated by DUG interpolating its neighbors in the 

aliased gridded k-space of all coils. The final image was obtained by sum of square 

combination of all coil images. On the other hand, segmented GRAPPA reconstructions 

(12,14) were performed on the cardiac and brain data, respectively, for comparison. 16 

segments along the readout and azimuthal directions for radial GRAPPA(12) and spiral 

GRAPPA(14), respectively, were used as described in their respective algorithms. All 

algorithms were implemented in MATLAB (The Mathworks Inc., Natick MA, USA) on a 

Pentium 3.00 GHz computer with 2GB RAM. 

 

 

5.4 Results 

Figure 5.7 presents the reconstruction results of the spiral brain data for R = 2 (b) 

and R = 4 (c). For each acceleration factor, the reconstructed images using direct spiral 

GRAPPA and DUG are shown. The reconstructed images are displayed with the same 

windowing for comparison. Below each image its absolute difference with the non-

accelerated image (a) is displayed, with a window setting that is much lower than that for 

the reconstructed image. The optimal kernel supports (of circular shape) used for 

reconstruction were 9 × 9 (R = 2) and 11 × 11 (R = 4) for DUG and 4 × 4 (R = 2) and 5 × 

5 (R = 4) for direct spiral GRAPPA. DUG reconstruction shows a better performance 

compared to spiral GRAPPA as indicated by the difference images. A quantitative 

comparison between these reconstructions is provided in Table 5.1. 
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      Figure 5.7 Spiral reconstructed images  

 

Gridding window width was varied to investigate its influence on the DUG 

reconstruction as illustrated in Figure 5.8 for R = 4. In all cases, the optimal kernel was 

used. It is obvious from visual inspection that the reconstruction performance increases 

with increasing gridding window width.  

 

(a) 2-fold acceleration and (b) 4-fold acceleration. For each stack images, the under-sampled 
image is shown at the top row and the middle and bottom rows correspond to the direct 
spiral GRAPPA and DUG reconstructed images, respectively. To the right of each 
reconstructed image, its absolute difference with the non-accelerated image is shown.  
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                  Figure 5.8 Reconstruction quality and gridding window 

 

 

Figure 5.9 presents the radial cardiac data results for R = 4 (b) and R = 6 (c). DUG 

reconstruction is compared to radial GRAPPA. The images are organized in the same 

manner as in Figure 5.7. The two reconstructions are visually comparable and only a 

quantitative comparison can be made as indicated in Table 5.2. The optimal kernel 

support used were 3 × 3 (R = 4) and 4 × 4 (R = 6) for DUG and 3 × 3 (R = 4) and 3 × 3 

(R = 6) for radial GRAPPA; 

 

(a) (b) 

(c) (d) 

Influence of the gridding window width on the reconstruction 
performance for 4-interleaved spiral accelerated at rate 4. Widths of (a) 3, 
(b) 4, (c) 5, and (d) 6 were used. Reconstruction quality improves with 
increasing gridding window width. 
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5.5 Discussion 

We have shown that an efficient reconstruction of non-Cartesian accelerated data 

can be achieved by deconvolution of the gridded k-space. While examples using spiral 

and radial have been shown, DUG can be used to reconstruct images from any trajectory 

with regularly organized patterns. In DUG, a judiciary interpretation of the energy 

distribution of the acquired signals during the gridding process is exploited in order to 

considerably reduce the number kernels necessary to achieve high quality reconstructed 

images, leading to faster reconstruction. The ability of DUG to reconstruct high quality 

data with a number of kernels per coil equal the parallel imaging accelerator, only one 

kernel more than that used in a normal Cartesian GRAPPA, provides a significant gain 

for non-Cartesian applications involving repetitive measurements such as function MRI, 

perfusion imaging, and diffusion tensor imaging. 

 

The results of Figs. 5.7 and 5.9 and Table 5.1 clearly demonstrate the superior 

reconstruction performance of DUG as compared to segmented GRAPPA (12,14). DUG 

applies a weighted average interpolation at the last step of the two convolution processes 

(gridding followed by DUG interpolation), as opposed to segmented GRAPPA, and 

therefore better handles the error propagation during the reconstruction because of the 

ability of the DUG interpolation to blindly provide the best fit to the problem that is 

present to it. Compared to segmented GRAPPA utilizing n sectors, the proposed method 

is approximately (n-1) times faster as indicated in Table 5.2. 
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The simulation analysis provided in the “Theory” section provides strong support 

to our segmentation strategy of the gridded data for efficient reconstruction. Although our 

proposed algorithm is not as theoretical exact as previously demonstrated non-Cartesian 

GRAPPA reconstruction schemes, it is far more efficient and reliable and can be used in 

a number of applications. 

 

Table 5-1Comparison between reconstruction mean square errors 

 
 

The demonstration of our method was performed with a full reference data 

acquired during the first measurement which corresponds to the acquisition scenario in 

many applications such as functional MRI, diffusion tensor imaging, and perfusion 

imaging. However, the reconstruction using weights derived solely from the low k-space 

resolution of the reference data showed comparable performance to that using the full 

reference data (results not shown). This suggests that the new method can also be used in 

applications requiring internal calibrations.  

 
Radial  Spiral 

R = 4 R = 6  R = 2 R = 4 

Radial GRAPPA 182 366  - - 

Direct spiral GRAPPA - -  656 3840 

DUG 165 321  456 1466 
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      Figure 5.9 Radial reconstructed images 

 

 

Distances between acquired non-Cartesian k-space data points increase with the 

parallel imaging acceleration factor. It is therefore important that the chosen gridding 

window width be large enough to avoid gridded data points with zero value as indicated 

by the results of Figure 5.8.  

 

(a) 2-fold acceleration and (b) 4-fold acceleration. For each stack images, the under-sampled 
image is shown at the top row and the middle and bottom rows correspond to the direct 
radial GRAPPA and the new efficient GRAPPA reconstructed images, respectively. To the 
right of each reconstructed image, its absolute difference with the non-accelerated image is 
shown.  
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To avoid gridding errors that may occur when the sampled data violate the 

Nyquist criterion, the recently introduced pseudo-GRAPPA (18) algorithm utilizes a 

special gridding algorithm in which, instead of spreading each non-Cartesian datum on 

neighbor Cartesian grids as done in conventional convolution gridding algorithms, each 

datum is shifted to the nearest Cartesian grid leaving holes in the k-space. Then different 

patterns in the Cartesian grid are identified for normal GRAPPA interpolation. However, 

while the method can be applied to any arbitrary non-Cartesian trajectory, it may require 

a considerably high number of GRAPPA kernels (as one kernel per pattern is required) 

leading to potentially long acquisition time. Our proposed method can utilize any 

conventional gridding algorithm and provide considerable computational advantage while 

ensuring high quality images for non-Cartesian trajectories composed of regularly 

organized patterns. 

 

Table 5-2 Comparison between computation times per unit image (in sec) 

The total calculation time of the gridding table and GRAPPA weights are not included since they 
were virtually identical for the three methods.   

 

 
The total calculation for determining the gridding table and DUG weights took less 

than 2 min for all the data examined in this study. Once the DUG weights and the 

 
Radial  Spiral 

R = 4 R = 6  R = 2 R = 4 

Radial GRAPPA 
145 158  - - 

Direct spiral GRAPPA 
- -  131 143 

DUG 
10 11  8 10 
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gridding table were determined, subsequent imaging reconstruction including gridding 

took approximately 10 sec per image (as shown in Table 5.2), making online imaging 

reconstruction possible for non-Cartesian parallel imaging with large volume datasets. 

 

 

5.6 Conclusions 

A new parallel imaging reconstruction method for non-Cartesian parallel imaging 

is introduced and demonstrated on in vivo data. Compared to existing methods, DUG 

works on data gridded using conventional gridding algorithm and is faster and provides a 

significant gain for non-Cartesian applications that require repetitive measurements such 

as functional MRI and diffusion tensor imaging. The proposed method introduces further 

improvements in computation times and reconstruction efficiency for parallel imaging 

using non-Cartesian trajectories.  
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CHAPTER 6. SINGLE-SHOT MULTI-ECHO PARALLEL EPI FOR DTI 

WITH IMPROVED SNR AND REDUCED DISTORTION 8 

 

 

 

In this chapter, a multi-echo parallel echo planar imaging (EPI) acquisition strategy 

is introduced as a way to improve the acquisition efficiency in parallel diffusion tensor 

imaging (DTI). With the use of an appropriate echo combination strategy, the sequence 

can provide a signal-to-noise ratio (SNR) enhancement while maintaining the advantages 

of parallel EPI. Simulations and in vivo experiments demonstrate that a weighted 

summation of multi-echo images provides a significant gain in SNR over the first echo 

image. It is experimentally demonstrated that this SNR gain can be utilized to reduce the 

number of measurements often required to ensure adequate SNR for accurate DTI 

measures. Furthermore, the multiple echoes can be used to derive a T2 map, providing 

additional information that might be useful in some applications. 

 

 

6.1 Introduction 

Diffusion tensor imaging (DTI (1)) permits noninvasive characterization of water 

self-motion in tissue and thereby provides information regarding the architecture and 

microstructure of a tissue. DTI has been proven to be an invaluable tool for the diagnosis 

                                                 
 
8 The work in this chapter has been adapted for publication as “Nana R, Zhao T, Hu X. Single-shot Multi-
echo Parallel EPI for DTI with Improved SNR and Reduced Distortion. Magn Reson Med. (In Production) 
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of pathologies that modify tissue integrity (2). Characterization of water diffusion 

requires a set of diffusion-weighted (DW) images (3), acquired with diffusion gradients 

applied in at least six non-collinear directions, plus an image with negligible diffusion 

weighting (b0 image). The greatest technical difficulty in acquiring DW images is to 

overcome the effects of macroscopic tissue motion, while retaining sensitivity to 

microscopic water motion. Owing to its insensitivity to motion, single-shot EPI (4) is the 

most widely used sequence for diffusion-weighted imaging (DWI). However, limited 

spatial resolution, sensitivity to field inhomogeneity, and low signal-to-noise ratio (SNR) 

are well-recognized limitations of EPI (5).  

 

Multi-shot EPI has been used to circumvent the shortcomings of single-shot EPI 

(6). Multi-shot EPI reduces the off-resonance induced distortions proportionally to the 

number of interleaves and leads to an SNR improvement as compared to single-shot EPI. 

However, ghosting artifacts due to variations between shots limit its use in DWI. Due to 

the complexity of brain motion and DTI’s high sensitivity to motion, navigator correction 

(7) does not always lead to ghosting free images. In addition, DWI using multi-shot EPI 

has a relatively low temporal resolution and throughput, limiting its use for clinical 

applications. 

 

Parallel imaging (8,9) has been demonstrated to mitigate the shortcomings of 

single-shot EPI effectively in general (10), as well as for DTI (11). Parallel imaging 

exploits the sensitivity variations of coils in a coil array to reduce the number of encoding 

steps necessary for gradient-based spatial encoding. Combining parallel imaging with 



www.manaraa.com

 
 

143

EPI provides the advantages of a multi-shot EPI without the need of multi-shot but 

potentially compromises the SNR due to shortened readout and g-factor (8). Any 

compromise in SNR is detrimental for DTI since SNR is often limited in DTI. Therefore, 

it is highly desirable to improve the SNR in parallel diffusion-weighted EPI. 

 

Multiple spin-echo or gradient-echo non-EPI acquisition strategies have been 

previously applied to improve the SNR (12,13) in DTI; these are, however, limited to ex-

vivo studies due to the sensitivity to motion of non-EPI acquisition schemes. Parallel 

imaging reduces the EPI acquisition window, permitting the acquisition of multiple 

images with multiple echoes after a single excitation. In addition to the expected gains of 

reduced distortion artifacts and increased spatial resolution, the multi-echo approach is 

expected to improve SNR, increasing data acquisition efficiency, and provide a T2 map. 

The present work investigates the benefits of acquiring multi-echo images using single-

shot parallel EPI for DTI. For the combination of multi-echo images, weighted averaging 

in which the weights for each image are determined pixel-wise as the relative attenuation 

of its intensity to that of the first echo image is used. The improvement in SNR of this 

approach is characterized both by simulation and experiments. Its practical utility is 

demonstrated by fractional anisotropy (FA) maps. Furthermore, high-quality T2 maps are 

also derived. 
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6.2 Methods 

6.2.1 Data Acquisition and Processing 

 

 

         Figure 6.1 Single-shot Multi-echo parallel DTI sequence block diagram 

 

 

Starting from a standard diffusion-weighted EPI sequence (14), a multi-echo 

pulse sequence was constructed by the addition of refocusing RF pulses and EPI 

acquisition of the resultant spin-echoes (Figure 5.1). Phase encoding gradients are 

rewound after each echo so that the k-space trajectories are identical for all echoes. The 

sequence was implemented using the Siemens programming environment IDEA™. 

90 
RF 

Diffusion 

Readout 

180       180 

Echo #1 Echo #2 

180 

EPI Readout EPI Readout 

In a standard diffusion-weighted imaging based on pulsed gradient spin echo (contoured 
with dash lines), a dual spin-echo with matched gradient pulses is used to provide the 
desired diffusion weighting while minimizing eddy current distortion (14). EPI readout 
produces a diffusion-weighted image with each excitation; nevertheless, only a single 
diffusion weighted image is acquired. We propose using multiple spin-echoes to acquire 
multiple EPI images with different echo times but with same diffusion weighting. 
Specifically, after the first diffusion-weighted EPI image is collected, another 180 RF 
pulse is added and a second EPI image, with the same diffusion weighting, is collected 
(contoured with filled lines). Additional echoes are collected by addition of 180 RF pulse. 
However, the long TE dictated by the length of the acquisition window limits the SNR in 
the second image. The combination of this approach with parallel imaging allows shorter 
acquisition windows, thereby shortening the TE. With this acquisition strategy, the echo 
images can be appropriately combined to improve the SNR and therefore reduce the 
number of measurements often used to improve the SNR 
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All in vivo data were collected with participants’ written consent in accordance 

with our institutional review board policy. The experiments were performed on a 3T 

Siemens Tim™ whole-body MR scanner (Siemens Medical Solutions, Malvern, PA) 

using a 12-channel head coil for reception and the body coil for transmission. Data were 

acquired on six healthy subjects (average age of 28± 4) with an imaging resolution of 2 × 

2 mm2, a matrix size of 128 × 128, and a slice thickness of 2 mm. Imaging protocols with 

an acceleration factor (R) of 2, 3, and 4, respectively, were used. The following imaging 

parameters were used: 5 echoes with minimum possible echo spacing, TR = 3 s, 

bandwidth = 1954 Hz/pixel, FOV = 256 mm, 10 axial slices, b = 1000 s/mm2, and 12 

diffusion weighting directions (plus b = 0). The echo parameters used for each imaging 

protocol are given in Table 6.1. GRAPPA (9) was used for image reconstruction. 

Additionally, standard spin echo (SE) images with five echoes were acquired on the same 

slices and at the same resolution for generating T2 maps for comparison. The SE echo 

times corresponded to 30, 60, 90, 120, and 150 ms. 

 

Echo combination was performed offline. FA maps were generated after 

distortion correction with FSL (FMRIB, Oxford, UK) which computes the apparent 

diffusion coefficient for each diffusion direction using only images acquired at b = 0 and 

at the desired b value. T2 maps were calculated by mono-exponential fitting of the multi-

echo b0 images or SE images. All custom computer programs were implemented in 

Matlab (The MathWorks, Inc., Natick, MA, USA). 
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Table 6-1 Echo times (ms) used for different acceleration factors 

 

 

 

 

 

 

6.2.2 Echo Combination Strategies and relative SNR Analysis 

When multiple echo images are acquired where signals from successive images 

are coherent and the noises are incoherent, several strategies can be used to obtain a 

composite image. For the single-shot multi-echo parallel DTI acquisition, the signal 

strengths of later echoes are significantly attenuated as compared to the one of the first 

echo due to T2 decay. In this case, weighted averaged combination of echoes would 

achieve higher gain in SNR than simple average and is therefore considered in this study. 

For simulating the SNR gain, a theoretical model of the ratio of the SNR of the combined 

echo to the first echo is derived as follows. 

 

The measured signal in any pixel, x% , can be represented as  

i i ix xw ξ= +% , [6.1] 

where x is its true signal, i represents the echo number, ξi is the noise in echo image i 

assumed to have mean zero, wi is the attenuation factor of the signal intensity of echo i 

with respect to that of the first echo (i = 1), implying that w1 = 1. If N echoes are 

acquired, the weighted average of the measured signal, with weights given by the 

attenuation factors, is given by 

R TE(1) TE(2) TE(3) TE(4) TE(5) 

2 96 141 186 231 276 

3 85 117 149 181 213 

4 80 104 128 156 184 



www.manaraa.com

 
 

147

2

1 1

1N N

i i i
i i

x
y ( w ) w

N N
ξ

= =

= +∑ ∑% , [6.2] 

 

Let the SNR be the ratio of the mean value to the standard deviation of the noise, 

the ratio of the SNR of the combined echo to that of the first echo is given by  

2

11

N
y

i
iecho

SNR
( w )

SNR =
= ∑% . [6.3] 

 

In implementing the weighted averaging, a pixel-wise mono-exponential decay of 

the signal intensity between echoes was assumed and T2 map was first calculated. The 

pixel weight was then derived according to  

2

iTE

T ( x,y )
iw ( x, y ) e

∆−
= . [6.4] 

where ΔTEi is the echo spacing between echo i and echo 1, x and y are pixel coordinates. 

The weights were determined on b0 images and used for all DW images. 

 

SNR was measured in 18 different ROIs (per subject) categorized as major white 

matter (WM) tracts, deep gray matter (GM) regions, cortical WM (refers to peripheral 

WM within the gyri), and cortical GM. These regions were identified based on FA maps 

and cross-referenced with b0 images to avoid inclusion of CSF-filled spaces as described 

by others (15). Deep GM regions comprised of bilateral sections of the globus pallidus 

(GP), thalamus, and putamen. Deep WM ROIs included the genu and splenium of the 

corpus callosum, the anterior limb of the internal capsule (AIC), the posterior limb of the 
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internal capsule (PIC), and the external capsule (EC). Five regions of cortical WM, 

consisting of the superior frontal gyrus (SFG), supra marginal gyrus (SMG), superior 

temporal gyrus (STG), middle occipital gyrus (MOG), and postcentral gyrus (PG), were 

considered. The cortical GM ROIs resided in gray matter of SFG, SMG, STG, MOG, and 

PG. The SNR was determined according to a previously described procedure (16,17) to 

account for the number of receivers and the noise distribution in magnitude images 

obtained by sum-of-squares images. The ratio of the SNR of the combined image to that 

of the first echo image was computed for each ROI. 

 

 

6.3 Results 

  It is evident from visual inspection that the distortions present in diffusion-

weighted images acquired using a conventional DTI sequence without acceleration in the 

acquisition (Figure 6.1a) are significantly reduced in the ones obtained using the single-

shot multi-echo parallel DTI sequence with an acceleration factor of 4 (the first echo is 

shown) (Figure 6.2). This improvement is in good agreement with previous observations 

that parallel imaging reduces distortion artifacts in EPI-DTI (10,11). 

 

The simulated (according to equation [3]) ratios of the SNR of the combined 

image to that of the first echo for cerebro-spinal fluid (CSF), gray matter (GM), and 

white matter (WM) with assumed T2 values of 2200 ms, 100 ms, and 80 ms, respectively, 

are shown in Figure 6.3a. In generating the plots, a constant echo spacing of 24 ms 

(which corresponds to the experimental value used for R = 4, see Table 6.1) was assumed 
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and the respective weights (attenuation factors) were determined using Eq. [1.4]. The 

CSF shows nearly no attenuation and its relative SNR contribution is approximately the 

square root of the number of combined echoes. The relative SNR of the combined image 

tapers off after 5 echoes for both GM and WM, with SNR gain plateaus at 54% and 45%, 

respectively. 

 

 

          Figure 6.2 Evidence of geometric distortion reduction 

 

 

The results of the experimental relative SNR are shown in Figure 6.3b for three 

imaging protocols corresponding to an acceleration factor of 2, 3, and 4, respectively. 

Each plot reflects the average of the relative SNR across the ROIs and the subjects. These 

results indicate that the gain in relative SNR tapers off after about 2, 3, and 4 echoes for R 
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Diffusion-weighted Images acquired using (a) a standard diffusion sequence without 
parallel imaging with TE = 132 ms and (b) single-shot multi-echo parallel DTI sequence 
with acceleration factor of 4 (only the first echo image acquired at TE = 80 ms is 
shown). In both cases, b = 1000 s/mm2. The distortion artifacts present in the images of 
column (a) are significantly reduced in those of column (b). 
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= 2, R = 3, and R = 4, respectively. At the plateau, the relative SNR gain was (15 ± 2)% 

for R = 2, (25 ± 3)% for R = 3, and (36 ± 5)% for R = 4. 

 

 

     Figure 6.3 Simulated and experimental SNR gain 

 

 

Figure 6.4 presents FA maps of three slices (displayed in three different rows) 

generated (a) from a single-shot single-echo acquisition without averaging 

(corresponding to a scan time of 57 s), (b) a single-shot single-echo acquisition with two 

averages (corresponding to an acquisition time of 1 min 36 s), and (c) a single-shot 4-

echo acquisition without averaging (corresponding to a scan time of 57 s). While the FA 

maps generated from the first echo without averaging exhibit significant noise level 

(Figure 6.4a), the noise level in the FA maps generated from the 4 echo combination is 

 

S
N

R
Σ

E
ch

o
es

 / 
S

N
R

1s
tE

ch
o
 

Number of Echoes 

R = 4 

R = 2 

R = 3 

1.0

1.3

1.6

1 2 3 4 5

S
N

R
Σ

E
ch

o
es

 / 
S

N
R

1s
tE

ch
o
 

Number of Echoes 

CSF 

GM 

WM 

1.0

1.6

2.2

1 2 3 4 5

a b 

(a) Numerically derived ratio of the SNR of the echo combination to that of the first echo alone 
plotted as a function of the number of echoes combined, assuming a constant echo spacing of 
24 ms and a T2 of 2200 ms, 100 ms, and 80 ms for cerebro-spinal fluid (CSF), gray matter 
(GM), and white matter (WM), respectively. (b) Experimental plots of the relative SNR change 
between the echo combination and the first echo as a function of the number of echoes for 
three different parallel imaging protocols corresponding to R = 2, R = 3, and R = 4, 
respectively. Each plot reflects the average of the relative SNR across the ROIs and the 
subjects. 
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significantly reduced (Figure 6.4c), on par with that in the FA maps generated with 2 

averages (Figure 6.4b). Table 6.2 lists the mean FA values in the ROIs used for the SNR 

analysis. Note that for the cortical WM and cortical GM, respectively, values of 

individual ROIs were pooled together because they were very similar. The combination 

of 4 echoes led to FA values that are higher than those obtained with echo 1 without 

averaging and in good agreement with those obtained with echo 1 with 2 averages. 

 

 

           Figure 6.4 Illustration of acquisition efficiency improvement 
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Comparison between FA maps generated from multi-echo DTI datasets (R = 4) of 3 
slices of a healthy subject from: (a) first echo without averaging; (b) first echo with 
2 averages; (c) combination of four echoes of a single excitation without averaging. 
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       Figure 6.5 Comparison between T2 maps 

 

 

T2-weighted images (a) and the corresponding T2 maps (b) of two slices generated 

from 4 echoes of an R = 4 multi-echo dataset are shown in Figure 6.5. For comparison, 

images of the same slices obtained using a standard multi-echo SE sequence and 

corresponding T2-maps are shown in panels (c) and (d), respectively. Table 6.3 lists the 

T2 values of selected ROIs compared to those obtained using the standard multi-echo SE 

sequence. 
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b0 images (column a) and corresponding T2 maps (Column b) generated from 4 echoes of a 
single excitation multi-echo DTI dataset (R = 4). SE images obtained on the same slices and 
corresponding T2 maps are shown in columns c and d, respectively. 
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6.4 Discussion 

6.4.1 Echo combination and SNR 

The numerical calculations allowed us to investigate theoretically the 

performance of combined image using multi-echo parallel EPI, assuming representative 

T2 values and practical echo spacing. The latter mainly depends on the acquired matrix 

size and the bandwidth per pixel. The numerical results indicate that combining multiple 

echoes could result in SNR improvement and that considerably larger gains are expected 

in regions of longer T2 or for acquisitions with short echo spacing. The experimental 

SNR ratio between the combined image and the first echo image (Figure 6.2b) largely 

follow the numerical prediction (Figure 6.3a). However, the height and the location of the 

SNR plateaus are slightly different from those of the simulations. Note that at R = 4, the 

experimental echo-spacing (∆TE = 24 ms) corresponds to that used for simulations. 

These discrepancies are likely due to errors in determining the attenuation factors (wi) 

and the imperfection of the refocusing RF pulses. Overall, the experimental results 

support the prediction that echo combination leads to a SNR gain or at least maintains the 

SNR for all the number of echo combinations examined in this study. 
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       Figure 6.6 Comparison between SOS and weighted average echo combination 

 

 

Sum of squares (SOS) is widely used to combine images from array coils and 

provides a near optimal combination when the SNR is high but is less than optimal at low 

SNR (18, 19). Because multi-echo DTI images have low SNR, weighted average instead 

of SOS is recommended for the singles-hot multi-echo parallel DTI images. This choice 

is supported by our comparison (Figure 6.6) of the two methods when applied to our 

experimental data, which showed that weighted average performs better. 

 

In a previous paper, Matiello et al. (20) reported that the contributions of EPI 

readout and phase-encoding gradients to the b-matrix in DTI-EPI sequence were 

negligible. We have performed a similar analysis, taking into account the crusher and 

The figure compares the SNR in the combined images for different acceleration factors: (a) 
R = 2, (b) R = 4, and (c) R = 4.  Weighted average performs better than SOS even for the b0 
images. It is expected that for the diffusion-weighted images, which have inherently low 
SNR, this difference would be bigger. 
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slice selection gradients associated with refocusing RF pulses for additional echoes. With 

the imaging parameters used in this work, the difference in b-values between adjacent 

echoes ranges from 0.19 to 0.27 s/mm2. This difference is negligible, even when 

multiplied by 4 for the 5th echo, compared to the nominal b-value of 1000 s/mm2. For 

pixels containing multiple compartments with different T2s, compartment-dependent T2 

decay between the echoes may complicate the combination of the echoes. This was not 

found to be a significant factor as there is no statistically significant difference between 

the FA values of the echo combination and the first echo with approximately similar SNR 

(see Table 6.2). 

 

6.4.2 Acquisition efficiency 

The fact that the SNR tapers off after the combination of two echoes for the 

acceleration factor of 2 and more echoes at higher reduction factors is understandable 

because the shorter echo spacing at higher R allows the inclusion of more echoes before 

the signal drops out due to T2 decay. The 36% SNR increase in the combined image 

relative to the first echo image at R = 4 is close to the increase of 41% that would be 

expected from two averages of the first echo; this gain in SNR can be used to reduce the 

number of measurements and thereby leading to reduced scan time. This point is 

supported by the FA maps shown in Figure 6.4. The FA maps obtained from the first 

echo without averaging exhibits a significant noise level whereas the noise level of the 

FA maps generated from the weighted average of 4 echoes with the same acquisition time 

is significantly reduced, to a level comparable to that in the FA maps generated from 2 

averages of the first echo. These noise level differences led to a significant difference in 
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the FA values reported in Table 6.2. The first echo without averaging resulted in a 

decrease in anisotropy as its signal is close to the noise level (21). On the other hand, 

averaging the first echo with two averages or combining 4 echoes led to a better estimate 

of the anisotropy. 

 

Table 6-2 Comparison between calculated FA values of selected ROIs  

The comparison is performed between the FA values derived from the first echo and those 
derived from the combined echo images, computed and represented in Figure 6.4. 

Region 

FA values 

1st echo image 
without 

averaging 

1st echo image 
with 2 

averages 

Weighted average 
combination of 4 

echoes 
Combined cortical white matter 0.38 ± 0.05 0.46 ± 0.04 0.43 ± 0.03 
Combined cortical gray matter 0.17 ± 0.06 0.21 ± 0.02 0.20 ± 0.05 
Major white matter    
      Genu of Corpus callosum 0.60 ± 0.04 0.65 ± 0.03 0.66 ± 0.04 
      Splenium of Corpus callosum 0.64 ± 0.07 0.70 ± 0.03 0.68 ± 0.03 
      Anterior limb-internal capsule 0.55 ± 0.05 0.60 ± 0.03 0.62 ± 0.05 
      Posterior limb-internal capsule 0.56 ± 0.06 0.62 ± 0.04 0.61 ± 0.04 
      External capsule 0.40 ± 0.05 0.47 ± 0.02 0.45 ± 0.03 
Deep gray matter    
      Thalamus 0.33 ± 0.05 0.37 ± 0.03 0.35 ± 0.03 
      Putamen 0.18 ± 0.03 0.21 ± 0.03 0.23 ± 0.03 
      Globus pallidus 0.26 ± 0.06 0.31 ± 0.02 0.33 ± 0.04 
 

The multi-echo approach provides more gain at high parallel imaging acceleration 

factors. In the past, an acceleration factor of 2 is often used for parallel imaging to avoid 

image degradation at high accelerations. With the availability of array coils with a large 

number of channels, it is now common to use higher acceleration factors, such as 3, 4, 

and even higher (22, 23). In fact, with the 12-channel commercial array coil used in this 

study, images obtained using an acceleration factor of 4 are of good quality.  

 

While the multi-echo approach can enhance SNR per excitation, it could 

compromise the efficiency in multi-slice acquisitions. Specifically, with a given number 
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of slices, the minimum TR may be lengthened. In applications where a large number 

slices are acquired, a good approach may be to acquire 2 echoes, achieving most of the 

SNR gain while avoiding significantly increasing the TR. 

 

6.4.3 Additional T 2 map information 

The quality of the T2 maps derived using the single-shot multi-echo parallel EPI 

data (Figure 6.5b) is as good as the ones obtained using the standard multi-echo SE data 

(Figure 6.5d). Furthermore, as is illustrated in Table 6.3, no statistical significant 

differences between the corresponding T2 values probed from selected ROIs were found, 

consistent with the results reported in the literature (24,25). This demonstrates the 

potential of the single-shot multi-echo parallel diffusion weighted EPI sequence for 

providing additional information that might be useful in some applications. 

 

Table 6-3 Comparison between calculated T2 values of selected ROIs 

The comparison is performed between the T2 values derived from the b0 echo images of the 
single-shot multi-echo DTI and those derived from a multi-echo standard spin echo sequences. 

Region 
T2 Values, msec 

Single-shot multi-
echo parallel EPI 

Standard SE 

Cortical gray matter 70.42 ± 5.89 73.01 ± 4.53 
White matter 54.71 ± 4.22 55.23 ± 3.64 
Caudate Nucleus 61.95 ± 11.73 63.37 ± 9.15 
Putamen 56.16 ± 9.12 57.65 ± 9.63 
CSF 843 ± 206 871 ± 225 
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6.5 Conclusions 

We have implemented and demonstrated a single-shot multi-echo parallel 

diffusion-weighted EPI sequence in improving the SNR while retaining the advantages of 

reduced distortion. The SNR gain can be used to reduce the number of measurements 

needed or improve the image resolution. Furthermore, these additional echoes can be 

used to calculate the T2 map, providing complementary information that might be useful 

in some applications. 
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CHAPTER 7. CONCLUSIONS 

 

Parallel imaging is now an established technique for accelerating imaging speed 

beyond conventional MRI limits. This increase in speed has far-reaching consequences 

with respect to increasing the accuracy of clinical diagnostic accuracy, reducing the cost 

of research and medical examinations, and improving patient comfort. Ongoing research 

continues to address various issues that hinder some aspects of parallel MRI applications. 

In this dissertation work, five specific challenges to optimal and efficient parallel image 

reconstruction have been explored with practical solutions to ease routine clinical and 

research applications presented in Chapters 2-6. 

 

Chapters 2 and 3 explored methods for characterizing and minimizing errors in k-

space based parallel imaging. Chapter 2 presented a method based on cross-validation for 

selecting the reconstruction kernel support that results in an optimal compromise between 

accuracy and stability, i.e. best balancing the tradeoff between artifacts and SNR. 

Because the method is simple and applied in post-processing, it can be used routinely 

with many existing reconstruction algorithms. 

 

To further facilitate reconstruction optimization and characterization, Chapter 3 

introduced a simple and robust metric that exploits the shift invariance property of the 

reconstruction kernel to provide a goodness measure of k-space interpolation for parallel 

imaging. This in turn has enabled optimization and quantitative comparisons of several 
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parallel MRI reconstruction techniques. The metric extends to applications where the 

cross-validation based optimization finds limitations. 

 

Chapters 4 and 5 discussed strategies for improving efficiency of parallel image 

reconstruction in applications involving large datasets. In Chapter 4, a strategy was 

introduced that uses the metric describes in Chapter 3 to improve reconstruction 

efficiency and accuracy in free breathing non-gated dynamic parallel imaging by 

exploiting the cyclic nature of the respiration induced chest movement. This strategy can 

be coupled with existing algorithms to facilitate real-time on-the-fly image 

reconstruction. 

 

In Chapter 5, a method based on GRAPPA reconstruction was introduced to 

improve computation time and reconstruction efficiency for parallel imaging using non-

Cartesian trajectories. In many cases, the method adds a relatively small computational 

time per unit image as compared to conventional GRAPPA, making online parallel image 

reconstruction for non-Cartesian applications involving large datasets now possible. 

 

Finally, Chapter 6 presented a pulse sequence that combines parallel imaging and 

multi-echo strategy to improve SNR in DTI. This SNR gain can be utilized to improve 

acquisition efficiency. Additionally, the multiple echo-images can be used to generate a 

T2-map, complementing information that can be useful in some applications. 
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In summary, methods developed in this thesis work address challenges in parallel 

image reconstruction. This dissertation represents a significant contribution to the 

improvement of existing state-of-art reconstruction methods and will provide useful tools 

and insights for future developments in parallel imaging.  

 


